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ON PARKING SOLUTIONS AROUND EUROPA

Martin Lara’ Ryan Russell! Benjamin Villac?

The long-term stable trajectories around Europa, one of the Galilean moons
of Jupiter, are analyzed for their potential applications in spacecraft tra-
jectory design, such as end of mission disposal options, backup orbits, or
intermediary targets for transfer trajectories. The phase space is analyzed
via the computation of families of periodic orbits and the estimation of
their associated stability domains using a Fast Lyapunov Indicator method.
While the core analysis of the paper uses the circular restricted three body
problem, a selected set of parking solutions is checked by integrating the
corresponding initial conditions in an ephemeris model over several years.

INTRODUCTION

The design of space missions with close range analysis of potentially life harbouring celestial
bodies is generally constrained by planetary protection measures. Such requirements directly result
in constraints on lifetime and recovery margins to be taken into account in the design of the spacecraft
trajectory. For example, non-impact conditions with a celestial body must not only be satisfied for
the nominal trajectory under nominal hardware conditions, but must also encompass the evolution
of the spacecraft in the event of missed thrust or other problems with the propulsion system. In
the worst case scenario, a complete loss of thrust during a maneuver may result in placing the
spacecraft in an unstable environment from which the nominal course of the mission may be difficult,
or impossible, to recover.

Periodic or quasi-periodic stable trajectories can be used to achieve such goals because the natural
dynamics do not lead a spacecraft into risky episodes. A missed maneuver opportunity starting from
such stable trajectories will only require to wait a few periods before new opportunities can be found.
Also, as these stable trajectories are indeed compounded into open regions of phase space, or stability
islands, small perturbations along the trajectories will not lead the spacecraft to leave these regions.
Thus transfers lying inside stability regions at all times present desirable robustness properties,
though most likely at the cost of larger fuel than transfers performed in unstable regions. The stable
option, may nevertheless be an option for some legs of a long trajectory. Also, these islands of stable
dynamics can be used as intermediary targets in transfer design problems to allow for longer mission
lifetime and better recovery properties [1] as well as back-up options. These islands will thus be
referred to as parking solutions.

While the stability of an orbiter close to Europa has been considered in several papers [2, 3, 4, 5, 6],
the exploration of more distant stable regions has received much less attention, except for the case
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of distant retrograde orbits (DRO) [7, 8]. This paper aims at discussing and characterizing the main
classes of the more distant parking solutions that exist around FEuropa.

The approach taken uses the circular restricted three-body problem (CRTBP) to model the
underlying dynamics and aims at computing families of periodic orbits that bifurcate from the main
planar families. This analysis is complemented by the computation of stability maps based on a Fast
Lyapunov Indicator [9, 10] in order to estimate the extent of the stability regions that exist around
the main stable periodic orbits. This grouping of families of trajectories allows us to evaluate the
different sets of parking solutions on their robustness properties as well as their physical configuration
in position space.

After reviewing the basic dynamical notions of interest for this paper, the computation and
relations among the different families of periodic orbits are considered. Finally, a discussion on the
different classes of parking solutions and an evaluation of their robustness to perturbation in a more
realistic model than the CRTBP is given.

DYNAMICAL BACKGROUND AND TOOLS

While the very long-term stability properties of some regions of phase space may differ substan-
tially between a CRTBP and a more realistic model of the dynamics [11], the sets of trajectories of
interest in this paper should be, by definition, robust with respect to small enough perturbations
and thus continue to exist in the CRTBP. The choice of this model for our analysis has the advan-
tage of resulting in faster numerical integration routines and represents an autonomous hamiltonian
approximation to the dynamics (availability of an integral of motion) which simplifies the analysis
in some cases. For the readers convenience, a quick review of the basic dynamics in this model is
provided in the Appendix, while the topics more relevant for the remainder are reviewed in this
section. References for this background can be found in [12, 13].

Mixed phase space

Besides the unavailability of closed form solutions for the CRTBP, many of the challenges in
analyzing the CRTBP dynamics comes from the complexity of the orbit structure in phase space.
While the set of trajectories of an integrable system is nicely foliated by invariant tori on which
periodic and quasi-periodic orbits lie, the presence of perturbations, such as the presence of Jupiter
in the model considered, result in the destruction of some of these tori, leaving the place to a
mixture of chaotic and regular motion. Chaotic motion associated with the idea of high sensitivity
with respect to the initial conditions is the result of transversal intersections of hyperbolic manifolds
of unstable periodic orbits, while regular motion is defined as the remaining set of stable periodic
and quasi-periodic trajectories.

As the size of the third-body perturbation increases (e.g., a decrease in the Jacobi constant,
C) chaotic motion tends to dominate the phase space, while the regular trajectories tend to clump
themselves into open regions of phase space, referred to as stability islands, or regions. This is
illustrated in Figure 1, which presents a Poincaré map [13] of the planar problem at a fixed Jacobi
constant.

While the concept of a stability region is less definite than that of chaotic or regular motion, it
is of immediate practical interest. These regions are defined as sets of trajectory legs staying close
together* for a given length of time (assumed to be large from a practical viewpoint, e.g. larger
than 10 years), and thus capture the notion of practical stability needed for spacecraft applications.
When chaotic motion tends to dominate the phase space, the stability islands are well approximated
by the numerical estimation® of the set of regular motion. The type of motion near the boundary of

*Distance is here defined in terms of orbital nearness and not statewise distance. For example, two circular orbits
differening only by a small difference in their semi-major axis are near in the orbital sense.
TAnd thus the resolution of the dynamics up to a finite resonance order
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Figure 1: Example of a Poincaré map at fixed Jacobi constant (C = 3.00363) in the nor-
malized Jupiter-Europa planar CRTBP (y = 2.528 x 10~°). The zoom window presents
a more detailed view on a stability island immersed in the chaotic sea.

such regions presents large variations in dynamical behavior that appear as a sharp transition from
regular to chaotic motion.

While Poincaré maps give a useful qualitative picture of stability islands in the planar problem,
the investigation of these regions in the CRTBP requires the use of different dynamical tools. As
Figure 1 suggests, the stability islands are associated with stable periodic orbits which form the
backbone structure of these islands. Periodic orbits allow us also to investigate the bifurcations of
these islands which appear at resonant values. Resonances are defined as periodic and quasi-periodic
orbits whose frequencies are in rational ratio with the fundamental frequency of the orbit of Europa
around Jupiter, which is set to 1 in the normalized setting of the CRTBP.

Periodic orbits

Periodic orbits appear as forming the backbone of the dynamics and offer a basic structure upon
which to build the discussion of the parking solution regions.

The stability of a periodic orbit is conceived from the behavior of the periodic orbit variations.
Therefore, the variational equations must be integrated for every periodic orbit of interest. The
first order variations conform a linear differential system with periodic coefficients. As we know
from Floquet’s theory, its general solution is made of a linear combination of exponentials e*! (or
characteristic multipliers) whose coefficients are not constant, but certain periodic solutions with
the same period T of the periodic orbit. Therefore, in order to determine the stability behavior of
a periodic orbit (in linear approximation) it is enough to study the multipliers at the end of one
period A = e*T (or the eigenvalues X of the monodromy matrix).

The CRTBP is a Hamiltonian problem, therefore, the eigenvalues appear in reciprocal pairs
(A, 1/)). Further, periodic orbits enjoy one trivial eigenvalue A9 = 1 that, for Hamiltonian systems,
has multiplicity 2. Then periodic orbits of Hamiltonian systems with three degrees of freedom have
4 non-trivial eigenvalues and two stability indices are normally used [14]

b,z)\z—}-].//\, 1=1,2 (1)



The condition b; real and |b;| < 2 (i = 1,2) applies for linear stability.

When dealing with planar motions, one index measures the “horizontal” or in-plane stability
(that we note by), whereas the other (noted by) shows the “vertical” stability character of the
periodic orbit [15], that is the orbit’s behavior when undergoing perturbations in the out-of-plane
direction. There are critical values of the stability indices (some non-trivial eigenvalues taking the
value A = 1) where new families of periodic orbits can bifurcate from the original one, either in
the plane (critical horizontal index: b, = £2) or orthogonal to it (critical vertical index: b, = £2).

Note that at b = +2 = A = +1, and the bifurcation occurs with the same period of the critical
orbit. The case b = —2 implies that A = —1 and A\?> = e*®*7) = 1 resulting in a period doubling
bifurcation. Besides the critical cases b = +2, for —2 < b < 2 other families of periodic orbits may
bifurcate with multiple period from the original one [16] (see also [17], [18]). Thus, for eigenvalues
X that are n'" roots of the unity

A=cos(2rd/n)+ jsin(2nd/n) = b=2cos(2nd/n), (2)

where d and n are integer numbers and j is the imaginary unit, the corresponding stability index
of the n-fold periodic orbit? is b = +2. We call “d:n-resonant orbits” to these critical orbits, and
“d:n-resonant families” to the families of periodic orbits that emerge from a d:n-resonant orbit.

The representation of the stability indices versus the parameter or integral generator of a family
of periodic orbits produce what Hénon calls “stability curves” [16], where the changes in the stability
of a family can be clearly appreciated. The stability curves are usually represented in the real plane.
However, unstable orbits with complex eigenvalues out of the unit circle have complex stability
indices. Therefore, in some cases we use three-dimensional stability curves. For a detailed description
of the different cases of instability that can appear, the interested reader is referred to advanced
textbooks on the topic or to the original reference [14].

Stability maps

While the bifurcation analysis of periodic orbits helps in establishing the relation between different
stability islands, many families of periodic orbits belong to the same stability region, and grouping
them together into one connected region helps to capture the notion of a stability region.

In order to combine alike families of periodic orbits and estimate the overall shape of the stability
regions, the computation of stability maps has been considered [9]. These maps, based on the
computation of a chaoticity indicator’ known as the Fast Lyapunov Indicator (or FLI), allow us to
extend the information obtained via Poincaré maps in the 2-dimensional problem to the case of the
3-dimensional model. For each vertex of a grid of initial conditions (IC), the corresponding value
of the FLI is computed, and a density map of the resulting array of values can be generated. For
example, Figure 2(a) represents the stability maps computed for the same slice of IC as the one
considered in the Poincaré map of Figure 1(a), while Figure 2(b) represents the stability map of the
set of trajectories crossing the (x,z) plane orthogonally, thus showing a snapshot of the dynamics
in the spatial problem.

In particular, we note that the larger the stability region, the larger is the robustness property
of the central periodic orbit. For example, performing an impulsive maneuver along the x-axis from
the nominal periodic orbit results in moving the IC of the nominal orbit along the V,-axis. In the
case presented in Figure 2(a), a AV of about ~ 11 m/s is required to transfer a spaceraft from a
nominal, stable, direct periodic orbit to a higly chaotic region. This will result in a high probability of
impact¥ with Europa after a few weeks without any control. Any AV smaller than this value places

iThe T-periodic orbit after a period 7 = nT

§A chaoticity indicator is a map from the phase space to the set of real numbers, that allows us to distinguish
between regular and chaotic trajectories, based on the indicator value.

Yor escape from Europa.
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Figure 2: Examples of a FLI maps at fixed Jacobi constant (C = 3.00363) in the normal-
ized Jupiter-Europa planar CRTBP (u = 2.5287°). Low values of FLI indicate region of
stability while large values indicate strong chaos. The chaotic sea is centered around
the equatorial plane.

the spacecraft on an orbit inside the stability region. This region will have the same characteristics
as the nominal periodic orbit and will not create any impact/escape hazard.

Parking solutions evaluation

From the previous discussion it appears that parking solutions can be characterized by a funda-
mental periodic orbit together with a notion of a robustness measure related to the volume of the
stability region on a suitable section. The fundamental periodic orbit captures the main geometri-
cal information of the stability region (shape of position path), and the robustness measure should
capture the extent and shape of the overall stability region. While the use of a single number to
summarize the robustness properties appears difficult to define, the description of the families of
periodic orbits at the outer boundary of the stability regions, the computation of stability maps,
as well as, the evaluation of the lifetime of sample trajectories in an ephemeris model do help in
characterizing these complex dynamics.

Passing from the CRTBP to the ephemeris model requires some care. On one hand, the ephemeris
model is related to an epoch. However, since we are interested in long-term stability orbits, the epoch
should be irrelevant to some extent, and we choose January 1, 2025 (Julian date of 2460677.0) for
all our trials.

On the other hand, the orbit of Europa is not circular, but slightly elliptic. In fact, the distance
from Europa to Jupiter varies due to eccentricity and slight perturbations in semi-major axis on the
order of 1-2%. So we decided to do the transformation using the instantaneous angular momentum
vector of Europa with respect to Jupiter, but introducing a one dimensional scaling parameter k
that varies in the range 0.98 to 1.02. After scaling the initial state (position, velocity, and period)
we do the propagation for a maximum of 1000 days and plot the resulting “lifetimes,” i.e. how long
does it take to escape Europa or impact. Then, the stability of the orbit can be deduced for the
width of the range of k values for which the orbiter reaches the required lifetime. The nominal value
for the Europa-Jupiter distance is chosen to be 6.709 x 105 km, cfr. p. 347 of [19]. More details are
given in the Appendix.



PERIODIC ORBIT FAMILIES

There exist a great variety of families of periodic orbits of the CRTBP. However, since we are
mainly interested in orbits enjoying long-term stability, we pay special attention to the family of
equatorial retrograde orbits around Europa (hereafter, “the retrograde family”) without limiting to
the DROs case of [7, 8]. Of high interest is also the “direct family” of equatorial direct orbits around
Europa, providing large regions of orbit stability for almost circular and egg-shaped orbits close to
Europa. Among the less promising families investigated, only the halo family is described.

In general, we proceed as follows. After computing the main families of planar periodic orbits
we, first, search for a variety of vertical bifurcations that occur at d:n-resonant orbits of a given fam-
ily. Then, we continue each vertically bifurcated d:n-resonant family of three dimensional periodic
orbits, and trace its stability behavior. A dense set of “critical” orbits where the stability of the
corresponding d:n-resonant families change helps in defining global stability regions in phase space
[20].

Families of planar orbits
The retrograde family

The retrograde family starts with grazing, retrograde, equatorial orbits around Europa. For decreas-
ing values of the Jacobi constant, the family continues with almost circular orbits of increasing size.
Close to Hill’s stability radius the orbits are no longer perturbed Keplerian ellipses around Europa,
and, consequently, its shape also changes in the rotating frame where we find near ellipses with the
semimajor axis in the y-axis direction and centered at Europa (see Fig. 3).
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Figure 3: Retrograde family of periodic orbits around Europa. Left: sample orbits.
Right: characteristic curve.

The orbits of the retrograde family are simple-periodic orbits that intersect the z-axis perpen-
dicularly. Therefore, initial conditions of any orbit of the retrograde family can be chosen such that
r=xz9,y=2=0,%=2=0,and §y = go. Thus, the totality of the retrograde family can be repre-
sented by a “characteristic curve” yo = go(zo) [16]. That is the convention used in the right plot of
Fig. 3, where we note that the minimum velocity v = 0.0593017 occurs at a distance r = 0.0145519
units of length (= 6.25 times the equatorial radius of Europa).

The left plot of Fig. 4 shows the stability curves (C,b) of Europa’s retrograde family. In the



right plot we show an analogous curve where abscissas are x distances. All the orbits are linearly
stable, and since neither by nor b, take the critical values =2 we do not find any simple period or
period doubling bifurcation of this family. However, we will see later that we can find vertical and
horizontal bifurcations for different multiplicities of the period.
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Figure 4: Horizontal (blue) and vertical (red) stability indices of the retrograde family.
Left: variations of the Jacobi constant. Right: distance (zy) variations

The direct family

Starting from a planar, equatorial, direct periodic orbit close to Europa, we can continue the
“direct family”. Figure 5 shows a portrait of the direct family that includes only non-impact trajec-
tories. The stability curves of the direct family are shown in Fig. 6.
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Figure 5: Direct family of periodic orbits around Europa. Left: sample orbits. Right:
characteristic curve.

Close to Europa, the orbits are low ellipticity ellipses centered at Europa with the major axis in
the ordinates direction. Decreasing values of the Jacobi constant produce ellipses of increasing size.
Both stability indices decrease slowly until the horizontal one reaches a relative minimum b, = 1.6515
at C' = 3.00432; the axes of the corresponding ellipse are r,,, = 0.00690716, rps = 0.00722138
(rm = 4631.51, rpr = 4842.21 km). At this point, the shape of the orbits change from low ellipticity
ellipses to egg-shaped orbits with the basis towards Jupiter (direction of negative abscissas). The
egg-shaped orbits become more and more exagerated until impact with the surface of Europa at
C = 3.0036 (vertical line in Fig. 6). The evolution of this family for decreasing values of the Jacobi
constant is similar to Darwin’s “Family A of Satellites” [22] and Broucke’s analogous family H; [23]
(or Henon’s ¢’ family of the Hill problem [15]), with highly unstable orbits and passing through
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Figure 6: Left: Stability curves of the direct family. Right: Detail.

several collissions —that is not of interest for the subject of this paper. Note in the detail of Fig.
6 the two vertical, period doubling bifurcations (b, = —2) that occur close before the egg-shaped
orbits impact Europa.

Other families

Other families of planar orbits can be computed starting from small ellipses around the (unstable)
collinear points [12]. The collinear points are placed in the z axis, at * = 0.020485 and z =
—0.020211. We do not pay attention to the third collinear point. We call the Ly family to the family
of planar, periodic orbits that surround the collinear point Lo (positive z). It exists for decreasing
values of C. Figure 7 shows a portrait of the Lo family that includes only non-impact trajectories.
The bottom-right plot of Fig. 7 shows the corresponding stability curves, where we note that all the
orbits behave with high instability against in-plane perturbations (|by| > 2). In general, the orbits
also present instability with respect to out-of-plane perturbations, but there is a small region where
the vertical stability index is |by| < 2.

The orbits of the L; family are almost symmetric with respect to the y axis to those of the Lo
family, with a similar behavior.

Bifurcations of families of 3-D periodic orbits

We compute bifurcations of the previously computed families of planar, periodic orbits for differ-
ent multiplicities of the period by using Eq. (2). However, first of all we must note that not every
resonance is always possible. That is the case of the retrograde family. As previosly noted, we do not
find simple period (1:1-resonance, b = +2) or period doubling (1:2-resonance, b = —2) bifurcations
of the retrogade family. Furthermore, as appreciated in Fig. 4, the minimum value by , ~ 0.146 of
the vertical stability index limits the possible resonances to

é—iaurccos bv.m ~£<1
n  2n 2 )T 1 T4

On the contrary, we can find bifurcations on the plane further away than the 1:4-resonance.
However the minimum value b, m, ~ —1.38 of the horizontal stability index, again limits the hori-
zontal resonances that can occur to d/n = 13/35. Furthermore, due to these minima, we find two
different bifurcations for each allowable d:n-resonance, except for exactly the value b, m or by m. For
example, as appreciated in Fig. 4, b, = 1 for both C' = 2.99871 (z¢ = 0.0349429) and C' = 3.00107
(zo = 0.0114464). Then, as derived from Eq. (2), we found two different 1/6-resonant orbits, which
give rise to two different families of three dimensional periodic orbits that repeat themselves after
6 — 1 = 5 crossings of the z-y plane in the upwards direction, or “cycles”. This example is illustrated
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Figure 7: Left: Nonimpact orbits of the L,-family. Right: characteristic (top) and
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in Fig. 8 where we note that close to Europa (left plot) the orbit is almost circular remaining ap-
proximately between 7500 and 8000 km from Europa, while far away from Europa the orbit remains
between 23200 and 37500 km from Europa (right plot).

Figure 8: Periodic orbits after 5 nodal periods close to (left) and far away from (right)
Europa. Note the different scales

Vertical biburcations of the retrograde family

To study the three-dimensional motion in a dense region around Europa we compute many
families of three-dimensional periodic orbits bifurcated at different resonances. Some of them are
detailed in the Appendix.

Following Hénon [15] we can find vertically bifurcated orbits with simple period at z # 0, y =0,



either with z # 0, 2 = 0 (Hénon’s type Cy) or with z =0, 2 # 0 (Hénon’s type By ). All the critical
orbits we computed are multiple periodic orbits, and we find both types of bifurcations.

Close to Europa, the families of three-dimensional periodic orbits show a typical behavior. Start-
ing from a near circular, equatorial, retrograde, periodic orbit that is resonant after n periods in the
rotating frame and d rotations of Europa, a small perturbation either in the z (type C, bifurcation)
or in the 2 (type B, bifurcation) direction produce a three-dimensional orbit that is periodic after
n — d cycles. Then, increasing values of the Jacobi constant produce three-dimensional orbits with
decreasing inclination that evolve from retrograde to direct motion through the 180° of inclination.

Figure 9 presents the stability curves of several families close to Europa. As inclination angle,
we use the inclination in degrees
i = arctan(Zo /7o) (3)

of the velocity vector at the point yo = 29 = 0, where &y = 0. This angle provides a measure very
similar to the averaged inclination for perturbed Keplerian ellipses and is an illustrative quantity
for describing the evolution of non Keplerian orbits. Note in Fig. 9 that within the numerical
precision the index by always take the degenerate value bo = +2. This index is related to intrinsic
displacements in the (instantaneous) out of plane direction with the result of some indefinition in
the argument of the node in the rotating frame of the three-dimensional orbits.
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Figure 9: Right: Inclination-stability curves of the 1:7-, 1:8-, 1:9-, 1:10-, 1:11-, 1:13-
and 1:16-resonant families of the retrograde family close to Europa. Left: Same curves
plotetd as a function of the Jacobi constant.

Near circular orbits change their stability character at certain critical inclinations 4., and for
the computed families we find large areas of instability centered around polar orbits, yet slightly
displaced to highly inclined retrograde orbits (i ~ 100°). The changes in the stability properties of
almost circular orbits are related with bifurcations of stable eccentric orbits.

Far away from Europa, d:n-resonant families exist for decreasing values of the Jacobi constant.
In the rotating frame, the three-dimensional orbits remain approximately on the surface of an elliptic
cylinder that increases its height for decreasing values of the Jacobi constant. The height of the
cylinder is directly related to the velocity inclination Eq. (3), and at certain height/inclination
the periodic orbits change to instability. The left plot of Fig. 10 presents the stability curves of
several families far away from Europa in terms of the velocity inclination, where we note the abrupt
change in orbit stability at certain critical inclination. The minimum retrograde inclination for
which the orbits are stable decreases for increasing distances to Europa. However, starting from the
1:19-resonance, a region of mild instability appears which size increases with distance.

By joining a dense set of points (xg,i.) corresponding to the different d:n-resonant families, we
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Figure 10: Left: Inclination-stability curves of the, from left to right, 1:23-, 1:21-,
1:19-, 1:17-, 1:15-, and 1:13-resonant families far away from Europa. Right: Same
curves plotted as a function of the Jacobi constant.

can define stability regions in three-dimensional space as presented in Fig. 11, where the vertical
axis marks the boundary (d/n = 41/172) between resonances close to and far away from Europa.
In the far away case the (z¢,%.) points correspond to the change to strong instability.

Figure 11 is in good agreement with the “Red Sea Plot” of Lam and Whiffen (see Fig. 14
of [8]) that presents a neck in the stability region between 14000 and 24000 km approximately,
corresponding to the irregular area of Fig. 11, and with an abrupt minimum around 22500 km
corresponding to the peak at the 1:6 resonance in Fig. 11. Then, the narrow yellow region of [8]
corresponding to orbital lifetimes of ~ 25 days, can be fitted to the cubic

ic = 138.097 4+ 2136.79 29 — 45831.7 2 + 246110. =}

The agreement between Fig. 11 and Lam and Whiffen’s “Read Sea Plot” deteriorates far away from
Europa. Note, however, that both figures are not directly comparable, and we find much better
agreement when considering long lifetimes orbits of the CRTBP [21] instead of restricting to stable
periodic orbits.
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Figure 11: Boundary of the region of strong instability around Europa.
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Vertical biburcations of the direct family

Analogously to the case of retrograde orbits, a variety of d:n-resonant families can be computed
from the direct family. However, as shown in Fig. 9, many of them have been already computed in
the case of retrograde motion close to Europa. Then, as before, we compute a set (zo,.) of points
that define a stability region for direct, almost circular, three-dimensional motion close to Europa as
before. Figure 12 presents the complete picture for the stability properties for these type of orbits.
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Figure 12: Stability regions for almost circular motion close to Europa.

Note in Fig. 12 (see also in Fig. 9) the difference between the stability regions in the direct
and retrograde case: While the angle a between the orbit at the “critical” inclination i, and the
equatorial plane decreases with the distance to Europa for retrograde orbits (o = 180° — i), it
increases with distance for direct orbits (a = i.).

For almost circular, direct motion we should limit to resonant families below the 1:6-resonance,
where the orbits are clearly egg-shaped and the inclination information as defined in Eq. 3 must
be used with care. The limit for d:n-resonant families of non impact, direct, egg-shaped, three-
dimensional periodic orbits is a period doubling bifurcation (b, = —2) that occurs at C' = 3.003605
(see the detail of Fig. 6). The stability curves of the corresponding family of periodic orbits is
presented in Fig. 13. For decreasing values of the Jacobi constant, the three dimensional, egg-

shaped, periodic orbits are stable until they change to instability at C' = 3.00348 into a Krein
collision of the eigenvalues —where the four nontrivial eigenvalues abandon the unit circle out of the
real axis— and the stability indices take complex conjugated values. At C' = 3.00207 the stability
indices change to real. The family continues with unstable orbits until it suffers from a reflection
at C' = 3.00205. The rest of the family exists for increasing values of C' and is made of unstable
three-dimensional orbits that terminate at C = 3.00253 on a (highly unstable) planar orbit of a
new family. The orbits of this new family are planar, direct, egg-shaped, periodic orbits with the
basis towards the positive z direction that are almost symmetric to the orbits of the previously
computed egg-shape family and with an analogous behavior. We note, however, that the simply
periodic egg-shape orbits with this orientation are also stable. We delay details to a future paper
and only computed several three-dimensional periodic orbits bifurcated from the egg-shape families
at different d:n-resonant orbits. Figure 14 shows an example.

As appreciated in the detail of Fig. 6, there is another vertical, period doubling bifurcation of
the direct family at C' = 3.003601. The stability curves of the corresponding bifurcated family are
presented in the left plot of Fig. 15. This new family exists for decreasing values of the Jacobi
constant with orbits of increasing size and inclination that, in general, are unstable. However, there
is a narrow region of stability for 2.99943 < C' < 2.99992. The stable orbits show retrograde motion
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Figure 13: Left: Stability curves of the 1:2-resonant family of egg-shaped periodic
orbits. Right: detail in the region of stability

Figure 14: Stable egg-shaped orbits. Left: 6/17-resonant. Right: 1/2-resonant

remaining at a distance between 8 and 15 radius of Europe aproximately and with an inclination
parameter ¢ &~ 165°.

Other families

Despite the L; and L, families being highly unstable, we find two vertical bifurcations and
continue the corresponding families of three-dimensional periodic orbits.

Thus, in reference to the L; family we find a vertical, bifurcation at C = 3.00094 (b, = —2),
that produces eight-shaped orbits with increasing unstability. The other vertical bifurcation occurs
at C' = 3.00333 (by = +2), and gives rise to the ‘Halo’ family. The continuation of the Halo family
to decreasing values of the Jacobi constant reaches a minimum at C = 3.00084 (see the left plot of
Fig. 16) with a reflection in a small region of stable orbits. The orbits of the family continue with
increasing values of C' until they impact the surface of Europa at C' = 3.00108. The right plot of Fig.
16 shows a stable orbit for C' = 3.00084; due to symmetries in the model, we also find a symmetric
solution with respect to the z-y plane. The behavior close to the Ly point is almost symmetric to
the L; case, and we do not give details here.

13



120
100
80
60
40 bQ

20

0

2.998 2.999 3 3.001 3.002 3.003

C

Figure 15: Left: Stability curves of the family bifurcated at C' = 3.003601 from the direct
family. Right: Sample orbit inside the region of stability.
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Figure 16: Left: stability curves of the Halo L; family. Right: sample stable orbit

STABILITY REGIONS

From the previous discussion, it appears that four main, large, stability regions centered around
the DRO, direct, egg-shaped, and halo families exist. At a fixed Jacobi constant, the stability regions
are five-dimensional volumes in phases space which can be characterized by a four-dimensional
volume of initial conditions. Instead of considering all of the six, two-dimensional projections of the
different maps on the coordinates planes, a good idea of the size and main characteristics of these
regions can be obtained by simply considering a few maps around some selected periodic orbits. For
each periodic orbit considered, two stability maps are generated; one map describing the section of
the stability region when the position is varied with a fixed velocity direction, while the other map
considers the variations in velocity angle at a fixed position. The half-width of the stability regions
shown on this last type of variations indicates the approximate amount of AV needed to transfer a
spacecraft out of the center of the stability islands and, thus, the robustness properties of the most
stable trajectories in the region.|

INote that, the actual AV corresponding to a half-width of a stability island indicated by these maps is different
from the value read on one of the axis, as the maps considered are generated at a fixed position and Jacobi constant,
so that the overall velocity magnitude must remains unchanged. A AV along the & coordinate has to be corrected
by a AV in another direction, g or 2, in order to keep the velocity magnitude unchanged. Denoting AV as the
reading of the half width on one of these maps on one of the coordinate axis used (e.g %), and V the velocity
magnitude at the state considered, the AV needed to exit the stability region at the same Jacobi constant is given

by AV2 =2V2 - 2AV?24/1 — (A_V/V)2. This last expressions is approximately AV when the ratio AV /V is small.
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Figure 17: Sample FLI maps around DRO. Left column: Velocity variation, fixed
position. Right column: Position variation, fixed velocity. From top to bottom (by
row): C = 3.0014, region close to Europa; C = 2.9982, neck region; C = 2.9911, far
away region. Note that the highly inclined initial conditions for the larger values of C
correspond to motion around Jupiter and thus appear as almost stable.
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Retrograde regions

In the retrograde case, we have seen that the planar DRO family is stable and the associated
bifurcated families of 3-dimensional periodic orbits are also stable up to a certain inclination/ The
stability region encompassing these orbits thus appears as centered around the equatorial plane, and
highly inclined trajetories appear as lying in a large chaotic sea.

Figure 11 captures this idea and shows some of the complications that appear in a “neck”, or
transition, region extending from xg ~ 0.02 and zy ~ 0.044. The examination of the stability-
inclination curve of the 1:23 and the 1:21 resonance hints at the existence of independant stability
regions. These families present several transitions from a stable to unstable character.

Figures 17 and 18 present a few sample maps aroud the (z, z)-plane crossing, x < 0 of the DRO
family. For each case the position variations are obtained by changing the = and z coordinates** at a
fixed Jacobi constant, while the velocity variations are captured by varying the & and # coordinatestt
(Jacobi constant fixed). From these maps* it appears that the DRO family lies at the center of a
large stability region symmetric about the equatorial plane and limited in the maximum out-of-plane
motion by unstable motion (Figure 17, top and bottom plots). In the neck region (Figure 17 middle
plot and Figure 18), the main stability region is much smaller in all its dimensions and is surrounded
by even smaller, disconnected, stability islands. The trajectories near the center of the main stability
island are very stable but require the use of large AV maneuvers to be accessed. Thus, the smaller
stability islands in the neck region may represent more suitable parking solutions as, some of them,
present, good stability properties and may be easier to reach.

The central, equatorial, stability region mostly dominates the picture in the retrograde case. In
the neck region, however, the width of this region shrinks to zero in the equatorial direction for two
particular Jacobi constant values at which the planar, unstable 1:3 resonant periodic orbits bifurcate
from the main DRO family. The stability region associated with the DRO family remains connected
over the entire C range, but the connection only exists through purely thre-dimensional motion near
the critical neck values. This disappearance of the central region allows the shape of this central
stability region to change from the close to the far away region. However, the largest width of the
stability region always appears in the z and Z directions. Equatorial orbits are thus more robust
with respect to out-plane perturbations.

Direct and halo regions

In the direct case, the stability region associated with direct and almost circular orbits close to
Europa is rather large. It is centered around the equatorial plane and resembles the stability region
on the retrograde side at equivalent Jacobi energies. This is clearly captured by Figure 12.

As C decreases, however, the evolution of this main stability region proceeds differently than in
the retrograde case. While the chaotic sea of the highly inclined trajectories grows and reduces the
size of the retrograde, main stability region to more and more equatorial orbits, the stability region
in the direct case starts to disappear from the equatorial plane. This is in part due to the influence
of the transit dynamics associated with the libration points region. Indeed, the stable and unstable
manifold tubes originating from these regions correspond to direct motion when the zero velocity
surface starts to open [25]. The extent of the destruction of the stability regions are clearly shown
on Figure 19. This figure represents a set of stability maps around the (z, z)-plane crossing, = > 0,
of a few periodic orbits in the direct family.

We note that the transition from the large connected stability region, that exists close to Europa
at large values of C, to a completely chaotic dynamics occurs in a very small range of Jacobi constant
(see Figure 19). Starting from the equatorial plane, the transition follows a complex scheme.

**One can think of these maps as a C, type families of periodic orbits.
TTThese maps can be thought os as capturing the B, type families of periodic orbits.
#fand the computation of many more not printed here for paper size limitations constraints
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