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USING MULTICOMPLEX VARIABLES FOR AUTOMATIC
COMPUTATION OF HIGH-ORDER DERIVATIVES

Gregory Lantoine∗, Ryan P. Russell†, and Thierry Dargent‡

The computations of the high-order partial derivatives in a given problem are in general te-
dious or not accurate. To combat such shortcomings, a new method for calculating exact
high-order sensitivities using multi-complex numbers is presented. Inspired by the recent
complex step method that is only valid for first order sensitivities, the new multi-complex
approach is valid to arbitrary order. The mathematical theory behind this approach is re-
vealed, and an efficient procedure for the automatic implementation of the method is de-
scribed. Several applications are presented to validate and demonstrate the accuracy and
efficiency of the algorithm. The results are compared to conventional approaches such as fi-
nite differencing, the complex step method, and two separate automatic differentiation tools.
Our multi-complex method is shown to have many advantages, and it is therefore expected
to be useful for any algorithm exploiting high-order derivatives, such as many non-linear
programming solvers.

INTRODUCTION

SENSITIVITY analysis, i.e. computing the partial derivatives of a function with respect to its input vari-
ables, is often required in a variety of engineering problems. For instance, most optimization algorithms

require accurate gradient and hessian information to find a solution efficiently.1 In practice, accuracy, compu-
tational cost, and ease of implementation are the most important criteria when sensitivities must be evaluated.

There are many methods for generating the desired sensitivities. First, the partial derivatives can be analyt-
ically derived by hand, which is typically most accurate and efficient. However, for complicated problems,
this can be a tedious, error-prone and time-consuming process. Numerical methods are therefore preferred in
general. One classical numerical method is finite differencing that finds approximation formulas of deriva-
tives by truncating a Taylor series of the function about a given point.2 This technique is very simple to
implement, but suffers from large roundoff errors, especially for high-order derivatives.3

Another numerical method is Automatic Differentiation (AD). Invented in the 1960s, AD is a chain rule-
based evaluation technique for obtaining automatically the partial derivatives of a function.4 AD exploits the
fact that any function, no matter how complicated, can be expressed in terms of composition and arithmetic
operations of functions with known derivatives. By applying the chain rule repeatedly to these elementary
operations and functions, derivatives can be computed therefore automatically. Some AD tools are imple-
mented by preprocessing the program that computes the function value. The original source code is then
extended to add the new instructions that compute these derivatives. ADIFOR5 and TAPENADE6 represents
successful implementations of this approach. Other AD tools, such as AD02,7 ADOL-F8 and OCEA,9 keep
the original program but use derived datatypes and operator overloading to compute the function value and its
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differential at runtime. The major advantage of all these tools is that exact derivatives can be found automat-
ically, however they generally have the drawback of being hard to implement and computationally intensive
in terms of machine time and memory. They are also often limited to second- and in some cases first-order
derivatives only.

Complex arithmetic can be another way to obtain accurate sensitivities. The use of complex numbers for
the numerical approximation of derivatives was introduced by Lyness and Moler.10, 11 Relying on Cauchy’s
integral theorem, they developed a reliable method for calculating the nth derivative of an analytic function
from a trapezoidal approximation of its contour integral. Later Fornberg developed an alternative algorithm
based on the Fast Fourier Transform.3 However, both approaches are of little practical use because they
require an excessive number of function evaluations to obtain a high accuracy. More recently, Squire and
Trapp developed an elegant, simple expression based on a complex-step differentiation to compute first-order
derivatives of an analytic function.12 They pointed out that their method is accurate to machine precision
with a relatively easy implementation. Therefore, this method is very attractive and since the 2000s it has
been applied in an increasing number of studies in many fields.13–17 A thorough investigation on the practical
implementation of this method in different programming languages was also performed,13, 18 which makes
now this technique very well understood. Note that contrary to what many authors imply, this method is not
related to the other complex approach of Lyness and Moler, since the complex-step differentiation does not
rely on the Cauchy integral theorem. In particular, one major difference is that the complex-step differen-
tiation gives an expression for the first-order derivatives only, which limits greatly its range of applications.
Several extension formulas to second-order derivatives have been published in the literature,19, 20 but they all
suffer from roundoff errors.

In this paper, we describe a new way of computing second- and higher-order derivatives by using multicom-
plex numbers, a multi-dimensional generalization of complex numbers. By introducing a small perturbation
into the appropriate multicomplex direction, higher-order sensitivities exact to machine precision can be re-
trieved directly from the results. As in the complex method, when the program can handle multicomplex
algebraic operations, no special coding is required in the function calls as the higher-dimensional space car-
ries the underlying problem sensitivities. Our multicomplex step differentiation (MCX) method therefore
combines the accuracy of the analytical method with the simplicity of finite differencing.

Since standard multicomplex algebra is not built into existing mathematical libraries of common program-
ming languages, an object-oriented multicomplex toolbox (coded both in Matlab and Fortran 90) is presented
to encapsulate the new data types and extend operators and basic mathematic functions to multicomplex vari-
ables. By exploiting some properties of multicomplex numbers, an elegant recursive operator-overloading
technique is derived to implement the overloading without much effort.

To our knowledge this is the first time multicomplex arithmetic is exploited to generate partial derivatives
of any order. We can only mention the method of Turner who used quaternions (another extension of complex
numbers) to compute all first derivative elements of functions of three variables with a single call.21 However
this method does not evaluate high-order derivatives.

This paper is organized as follows. First, we present the mathematical theory behind the multicomplex step
differentiation. A review of the basic definition of multicomplex numbers is given, as well as the extension
of the concepts of differentiability and holomorphism to multicomplex higher-dimensional space. Next,
we investigate how to implement in practice our method in the common programming languages Fortran
and Matlab. Finally, several applications and comparisons are presented to validate and demonstrate the
performance of the multicomplex approach.
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THEORY

In this section, the mathematical formalism associated to the multicomplex algebra is introduced. Defini-
tions and basic properties of multi-complex numbers are briefly recalled. The natural multicomplex extension
of differentiability and holomorphism is given. Then the multicomplex step differentiation is proved and ex-
plained in details with a simple numerical example.

Definition of Multicomplex numbers

There exist several ways to generalize complex numbers to higher dimensions. The most well-known ex-
tension is given by the quaternions invented by Hamilton,22 which are mainly used to represent rotations in
three-dimensional space. However, quaternions are not commutative in multiplication, and we will see later
that this property prevents them from being a suitable for computing partial derivatives.

Another extension was found at the end of the 19th century by Corrado Segre who described special multi-
dimensional algebras and he named their elements ‘n-complex numbers’.23 This type of number is now
commonly named a multicomplex number. They were studied in details by Price24 and Fleury.25

To understand a multicomplex number, we can recall first the definition of the set of complex numbers, C,
which should be more familiar to the reader. C can be viewed as an algebra generated by the field of real
numbers, R, and by a new, non-real element I whose main property is i2 = −1.

C := {x+ yi / x, y ∈ R} (1)

The same recursive definition applies to the set of multicomplex numbers of order n and defined as:

Cn :=
{
z1 + z2in / z1, z2 ∈ Cn−1

}
(2)

where i2n = −1, C1 := C, C0 := R.

This formula emphasizes the formal similarity of complex and multicomplex numbers. We will take ad-
vantage of this observation in the next section.

Other useful representations of multi-complex numbers can be found by repetitively applying Eq. 2 to the
multi-complex coefficients of lower dimension. Decomposing z1 and z2 from Eq. 2, we obtain:

Cn :=
{
z11 + z12in−1 + z21in + z22inin−1 / z11, z12, z21, z22 ∈ Cn−2

}
(3)

In the end, it is clear (see Eq. 4) that we can represent each element of Cn with 2n coefficients in R: one
coefficient x0 for the real part, n coefficients x1, ..., xn for the ‘pure’ imaginary directions, and additional
coefficients corresponding to ‘cross coupled’ imaginary directions. We note that the cross directions do not
exist in R or C, but appear only in Cn for n ≥ 2. For instance, to make the notation of Eq. 4 more clear,
one can make the analogy between i1i2 and the standard product of the imaginary directions i1 and i2, which
implies that (i1i2)2 = (i1)2(i2)2 = (−1)(−1) = 1 and i1i2 = i2i1.

Cn := {x0 + x1i1 + ...+ xnin + x12i1i2 + ...+ xn−1nin−1in + ...+ x1...ni1...in

/ x0, ..., xn, ..., x1...n ∈ R} (4)

In addition, another way to represent multicomplex numbers is with matrices. In fact, it has been shown
that every linear algebra can be represented by a matrix algebra.26 One common example is the 2× 2 matrix
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representation of complex numbers.27 The following theorem extends this result to Cn.

Theorem 1
Let matrix I0 be the identity matrix. In addition, let matrices I1, ..., In be the matrix representations of the
multicomplex imaginary basis elements i1, ..., in with the property I2

k = −I0 for all k ≤ n. These matrices
can be constructed by recursion in the same way as the proof of this theorem in Appendix 1, after reordering
the indices properly to be consistent with the representation of Eq. 4.

Then the set of 2n × 2n real matrices of the form

M = x0I0 + x1I1 + ...+ xnIn + x12I1I2 + ...+ xn−1nIn−1In + ...+ x1...nI1...In (5)

is isomorphic to the multicomplex algebra Cn. Thoses matrices are called Cauchy-Riemann matrices in the
literature.24 In other words, there’s a one-to-one correspondence between Cauchy-Riemann matrices of this
form and multicomplex numbers. Arithmetic operations (+,−, x) on multicomplex numbers become then
equivalent to arithmetic operations on their matrix representations. The proof of this theorem is given in
Appendix 1.

In summary, we just reviewed three different representations of multicomplex numbers. We point out
that the representations are not simply a matter of notational consequence. To the contrary, they will be
essential to the development of the theory. To illustrate the various definitions, we consider several particular
examples. First, we define the elements of C2, called bicomplex numbers. Among all the multicomplex
numbers, they are the most known and studied, and have been used in several applications like fractals and
quantum theory.28, 29 As shown in Eq. 6, a bicomplex number is composed of two complex numbers or four
real numbers. It can also be represented by a 2× 2 complex matrix or a 4× 4 real matrix.

C2 := {z1 + z2i2 / z1, z2 ∈ C}
:= {x0 + x1i1 + x2i2 + x12i1i2 / x0, x1, x2, x12 ∈ R}

↔
{(

z1 −z2

z2 z1

)
/ z1, z2 ∈ C

}

↔



x0 −x1 −x2 x12

x1 x0 −x12 −x2

x2 −x12 x0 −x1

x12 x2 x1 x0

 / x0, x1, x2, x12 ∈ R

 (6)

Another example is an element of C3, called a tricomplex number. As the dimensions of the corresponding
matrices become unreasonably large, they are not given here. As shown in Eq. 7, a tricomplex number is
composed of two bicomplex numbers, four complex numbers, or eight real numbers.

C3 :=
{
z1 + z2i3 / z1, z2 ∈ C2

}
:= {z11 + z12i2 + z21i3 + z22i2i3 / z11, z12, z21, z22 ∈ C}
:= {x0 + x1i1 + x2i2 + x3i3 + x12i1i2 + x13i1i3 + x23i2i3 + x123i1i2i3

/ x0, x1, x2, x3, x12, x13, x23, x123 ∈ R} (7)

Finally, one last property of importance is that multicomplex addition and multiplication are associative and
commutative, contrary to quaternions. In fact, from Eq. 4, the product of two elements of Cn is obtained by
multiplying those two elements as if they were polynomials and then using the relations i2k = −1. However,
contrary to the complex numbers, the multicomplex numbers do not form a ring since they contain divisors
of zero (the product of two non-zero multicomplex numbers can be equal to zero). This can be an issue for
numerical computations as unexpected zeroed results may be generated when two divisors of zero happen to
be multiplied together. In his book,24 Price shows that those divisors have a very specific form (see Appendix
2), and are therefore extremely unlikely to be encountered in practice.
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Holomorphic Functions

We recall now the notion of differentiability and holomorphicity in multicomplex analysis. This is a natu-
ral next step, since the power of multicomplex numbers in computing derivatives cannot be exploited until a
full theory of multi-complex holomorphic functions is developed. For this discussion we will rely essentially
on the work of Price.24 We give the definitions of multicomplex differentiability and holomorphism, and we
present a theorem that will be necessary for the derivation of the formulas of multicomplex step differentia-
tion.

Definition 1
A function f : Cn → Cn is said to be multicomplex differentiable at z0 ∈ Cn if the limit

lim
z→z0

f(z)− f(z0)
z − z0

(8)

exists. This limit will be called the first derivative of f at z0 and will be denoted by f ′(z0).

Definition 2
A function f is said to be holomorphic in a open set U ⊂ Cn if f ′(z) exists for all z ∈ U .

This definition is not very restrictive, most usual functions are holomorphic in Cn. Examples of non-
holomorphic functions are the modulus and absolute value functions at zero.

Theorem 2
Let f : U ⊂ Cn → Cn be a function, and let also f(z1 + z2in) = f1(z1, z2) + f2(z1, z2)in where
z1, z2 ∈ Cn−1. The following three properties are equivalent:

1. f is holomorphic in U .

2. f1 and f2 are holomorphic in z1 and z2 and satisfy the multicomplex Cauchy-Riemann equations:

∂f1

∂z1
=
∂f2

∂z2
and

∂f2

∂z1
= −∂f1

∂z2
(9)

3. f can be represented, near every point z0 ∈ U , by a Taylor series.

This theorem can be obtained from results in Reference 24. The equivalencies (1) = (2) and (1) = (3)
were stated and proved in Theorem 24.2 and Theorem 27.1 respectively only for the special case n = 2
(bicomplex functions). Nevertheless, the same methods used can be employed to prove the theorem in the
general case.

Multicomplex Step Differentiation

We now proceed to the main purpose of the paper. Relying on the third property of theorem 2, Taylor series
expansions are performed and used to analytically demonstrate that the introduction of perturbations along
multicomplex imaginary directions allows us to recover the partial derivatives of any order of a holomorphic
function.

To facilitate the addition of perturbations along imaginary directions, we use the multicomplex representa-
tion of Eq. 4. For convenience, we must also define a new imaginary function that retrieves the real coefficient
of a specified imaginary part of a multicomplex number.
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Definition 3
Let z ∈ Cn be given by Eq. 4. The function Imσk{1,...,n} : Cn → R is defined to be:

Imσk
(z) = xσk

(10)

where σk = σk {1, ..., n} are all the combinations of the {1, ..., n} set of the following form:

σk {1, ..., n} = 1...1︸︷︷︸
k1 times

... n...n︸︷︷︸
kn times

(11)

for k1 ∈ {0, 1}, ..., kn ∈ {0, 1}, and k1 + ... + kn = k ≤ n. For instance, for n = 3, σ3 {1, 2, 3} = {123},
σ2 {1, 2, 3} = {12, 13, 23} and σ1 {1, 2, 3} = {1, 2, 3}.

To introduce our main result, for simplicity we start first with a function of one variable only. We demon-
strate how to obtain the nth-order derivative. Let f : U ⊂ Cn → Cn be a holomorphic function in U . Then
from theorem 2, f can be expanded in a Taylor series about a real point x as follows:

f(x+ hi1 + ...+ hin) = f(x) + (i1 + ...+ in)hf ′(x) + (i1 + ...+ in)2h2 f
′′(x)
2

+ ...

+(i1 + ...+ in)nhn
f (n)(x)
n!

+ (i1 + ...+ in)n+1hn+1 f
(n+1)(x)
(n+ 1)!

+O(hn+2) (12)

From the multinomial theorem,

(i1 + ...+ in)k =
∑

k1,...,kn
k1+...+kn=k

n!
k1!...kn!

ik11 ...i
kn
n (13)

We focus on the single term on the right hand side of Eq. 13 containing the product i1...in of each of the
imaginary directions (corresponding to the last imaginary component in Eq. 4). Since i2k = −1 for k = 1...n,
it is clear that the only possibility to obtain such a term is to have k1 = 1, ..., kn = 1 (kp = 0 where p = 1...n
means that ip is not present, and kp = 2 will make ip disappear as well since i2p = −1). This combination is
only allowed in the (i1 + ...+ in)n term. In fact, for (i1 + ...+ in)k where k < n, one of the kp’s in Eq. 13
must be equal to zero and for (i1 + ...+ in)n+1, one of the kp’s must be greater than 1.

From Eq. 12, if we ignore termsO(hn+2) we can see that the (i1 +...+in)n term is the only one associated
to the nth-order derivative f (n). Since the i1...in product uniquely appears in (i1 + ...+ in)n, we can deduce
that the real coefficient of the i1...in imaginary direction is a function of the nth-order derivative f (n) only
(i.e. no other derivatives involved). We can take advantage of this result by applying to both sides of Eq. 12
the imaginary function corresponding to the i1...in product (see Eq. 10). Noting that n!

1!...1! = n! and dividing
both sides by hn, we get an expression of f (n)(x) with approximation error O(h2):

f (n)(x) =
Im1...n(f(x+ hi1 + ...+ hin))

hn
+O(h2) (14)

For a small step size h, this expression can be approximated by:

f (n)(x) ≈ Im1...n(f(x+ hi1 + ...+ hin))
hn

(15)

It is easy to extend this result to obtain the nth-order partial derivatives of any holomorphic function of p
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variables:

∂fn(x1, ..., xp)

∂xk11 ...x
kp
p

≈
Im1...n(f(x1 + h

∑
j∈Π1

ij , ..., xp + h
∑
j∈Πp

ij))

hn

where
p∑
j=1

kj = n,Πj = ∅ if kj = 0,Πj =

{
j−1∑
l=1

kl + 1, ...,
j∑
l=1

kl

}
if kj > 0 (16)

which we will call the multicomplex step derivative approximation. Notice that this estimate is not subject
to subtractive cancellation error, since it does not involve any difference operation, contrary to finite differ-
encing. From the same single function call, it is also possible to retrieve the corresponding low-order partial
derivatives.

∂fk(x1, ..., xp)

∂x
k′
1

1 ...x
k′

p
p

≈
Imσk′

1
{Π1}...σk′

p
{Πp}(f(x1 + h

∑
j∈Π1

ij , ..., xp + h
∑
j∈Πp

ij))

hk

where
p∑
j=1

k′j = k < n, k′j ≤ kj (17)

For example, the particular formulas to compute the full Hessian of a function of two variables are the
following:

∂f2(x, y)
∂x2

≈ Im12(f(x+ hi1 + hi2, y))
h2

(18a)

∂f2(x, y)
∂y2

≈ Im12(f(x, y + hi1 + hi2))
h2

(18b)

∂f2(x, y)
∂xy

≈ Im12(f(x+ hi1, y + hi2))
h2

(18c)

∂f(x, y)
∂x

≈ Im1(f(x+ hi1 + hi2, y))
h

=
Im2(f(x+ hi1 + hi2, y))

h
(18d)

∂f(x, y)
∂y

≈ Im1(f(x, y + hi1 + hi2))
h

=
Im2(f(x, y + hi1 + hi2))

h
(18e)

Finally note that these results are not possible using quaternions or any non-commutative extension of
complex numbers. In such cases, the multinomial theorem of Eq. 13 fails and the i1...in imaginary coef-
ficient vanishes. For instance, since the imaginary units i, j, k of quaternions are anti-commutative under
multiplication (ij = −ji = k), we have (i+ j)2 = −2, which is a real number only.

Simple Numerical Example

To illustrate Eq. 16 and Eq. 17, we consider the following standard holomorphic test function that many
authors have previously used:10, 12, 13, 19, 20

f(x) =
ex√

sinx3 + cosx3
(19)

The exact first-, second-, and third-order derivatives at x = 0.5 are computed analytically and compared
to the results given by the multicomplex step, the hybrid finite difference complex-step scheme developed
by Lai,19 and the central finite-difference formulas for step sizes in the range 10−100 ≤ h ≤ 1. Since Lai
does not give a formula for third-order derivatives, we derived our own approximated expression by applying
Taylor series expansions on several complex perturbation steps:

f (3)(x) ≈ Im (f(x+ ih)− f(x+ 2ih)− f(x− ih))
h3

(20)
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Figure 1. Normalized error: first-derivative
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Figure 2. Normalized error: second-derivative
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Figure 3. Normalized error: third-derivative

The multicomplex step method is exact to ma-
chine precision for both first and second-order
derivatives with step sizes below 10−8. In addi-
tion, since the MCX approach is not subjected to
subtraction cancellations, we can choose extremely
small step sizes with no loss of accuracy. As ex-
pected, for first-order derivatives our method gives
identical results as the complex-step method while
outperforming the central difference scheme. How-
ever, for higher-order derivatives, the complex-step
method and central differences both suffer from sub-
traction errors. Note that in those cases the accuracy
improvement of the complex-step method over finite
differences is negligible. It was even observed that
the formula given by Lai is not numerically stable
as its associated error goes to infinity (not shown on
the plots to preserve similar scales).

Finally, we observe that finite precision arithmetic imposes a practical lower limit on the step size h, and
consequently an upper limit on the order of the derivative calculation. In fact, when double precision numbers
are used, the smallest non-zero number that can be represented is 10−308, and hn must be therefore greater
than this number to prevent underflow in Eq. 16: hn > 10−308. Also, h must be small since the error of
the approximation in Eq. 16 is on the order of h2 (see Eq. 14). To maintain approximate machine precision,
h2 < ε ≈ 10−16. It follows then for double precision arithmetic:

n <
log(10−308)
log(10−8)

≈ 38 (21)

In order to further prevent the underflow situation, it is also necessary to keep some margin to take into
account the inherent dynamical magnitude excursion of internal variables during function evaluation. There-
fore, it may be unreasonable to expect high precision with n = 38. Note that a complex number with n = 35
is represented with 235 > 1010real numbers. Even modern computers with extraordinary memory capacity
will not have enough storage to operate on multicomplex function calls in dimensions as high as 35.
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The limitation of the step size h is illustrated in Figure 4 where computation errors of the test function
(Eq. 19) up to the 6th-order derivative are calculated for step h from 10−70 to 1.
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Figure 4. 1st to 6th-order derivative relative errors

IMPLEMENTATION

We now describe in details how to implement in practice the formulas given in the previous section. For
completeness, computer details are discussed within two different types of programming frameworks: the
compiled language Fortran for its speed, and the interpreted language Matlab for its ease of use. Of course,
nothing is preventing the multicomplex adaptation to other languages like C++ or Java.

The objective is to develop a separate module or toolbox to support multicomplex arithmetic. The two main
required capabilities are: 1) define derived datatypes to represent multicomplex variables, and 2) overload
operators and intrinsic functions for allowing usual operations.

Implementation of multicomplex variables

The first step is to define the multicomplex variables. From Eq. 2, we choose the recursive data structure
where a multicomplex variable of order n is composed of two multicomplex variables of order n− 1.

z = {z1, z2} (22)

In addition to being valid for any order n, another advantage of this structure is its convenience regarding
extensions of operators and functions as we shall see in the next subsection.

In Matlab, this structure can be directly declared as recursive using a class statement, so only one definition
is needed to include multicomplex numbers of any order. In the structure an additional integer field permits
the retrieval of the order of the multicomplex variable. On the other hand, Fortran cannot handle recursive
structures, so one definition per order is necessary. For instance, for multicomplex numbers of order 2 and 3,
the syntax in Fortran is the following:
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1: {Bicomplex number definition}
2: type bicomplex
3: double complex :: z1
4: double complex :: z2
5: end type
6: {Tricomplex number definition}
7: type tricomplex
8: type(bicomplex) :: z1
9: type(bicomplex) :: z2

10: end type

Additionally, in order to implement Eq. 16 and apply imaginary perturbation steps, it is also necessary
to decompose a multicomplex variable into strictly real coefficients of its individual imaginary components.
Furthermore, the left side of Eq. 16 requires the implementation of the Imaginary function Im() that extracts
desired individual imaginary elements. To satisfy those two requirements, we require a mapping from the
current recursive representation of Eq. 2 to that of the real coefficient representation of Eq. 4. This conversion
can be deduced from the simple tree below that decomposes successively one multicomplex number into into
two multicomplex numbers of lower order.

z

z1 z2

z11 z12 z21 z22

x0 x1 x1…n-1 xn x1…n

Re(z) Im1(z) Im1...n-1(z) Imn(z) Im1...n(z)

in

in-1
in-1

Figure 5. Tree Representation of a multicomplex number of order n.

Moving all the way down the tree allows us to locate one specific imaginary element from a multicomplex
number, which serves as a basis of implementation for the Im function. In the same way, by traversing up
the tree, we define a multicomplex variable according to all its imaginary components and associated real
coefficients.

Operator and Function Overloading

It is necessary to redefine operational rules so that they can take multicomplex numbers as arguments.
This procedure is called overloading. This should involve basic math operations (+,−,×,/,̂ ), relational
logic operators (<,>,==), standard library functions (sin, asin, exp, ln, ...), and linear algebra operations
(matrix-vector operations, matrix inversion, eigenvalue computations).

Basic functions and operations The recursive multicomplex representation we selected in the previous
subsection makes the extension of any operation and function definition quite simple. In fact, with this
representation, it turns out that arithmetic operations on multicomplex numbers are completely identical to
respective operations on complex ones. For example, the multiplication of two multicomplex numbers has
the following form:

z × w = (z1 + z2in)(w1 + w2in) = (z1w1 − z2w2) + (z1w2 + z2w1)in (23)

which is the exact same form as the complex multiplication. The same property can be observed for any
other function or operation. This result can be readily deduced from Eq. 2 where it is clear that multicomplex
numbers have the same general form as complex numbers. Since i2n = −1 in Eq. 2, operation rules will be the
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same for complex and multicomplex numbers. It follows that we can re-use the same existing complex num-
ber overloading routines for complex numbers. The only change required is to replace the complex datatype
with the corresponding multicomplex datatype. This results in a very elegant and simple implementation.

Relational logic operators Regarding relational logic operators, we decided to follow the same strategy
as Martins.13 These operators are usually used inside conditional statements which may lead to different
execution branches. To compute correct derivatives, the execution branch should stay the same whether
the calculations are in made with real or multicomplex numbers. It follows that only the real parts of the
arguments should be compared.

Linear algebra Enabling linear algebra capabilities demands extra care. Here, at least two strategies are
possible. First, linear algebra algorithms can be re-written to support multicomplex arguments. However,
this can be a tedious process. For instance, in Fortran, linear algebra routines are commonly provided by
the LAPACK package which consists of hundreds of cryptic separate routines (for Gaussian elimination, LU
factorization, QR factorization ...). In Matlab the situation is even worse as linear algebra routines are built-in
and cannot be accessed.

A second strategy is to take advantage of the matrix representation of Eq. 5. By mapping multicomplex
variables to higher-dimensional real- or complex-valued matrices, we can use directly existing real or complex
built-in algorithms, at the expense of memory usage. For instance, to solve the multicomplex linear matrix
equationAz = b whereA ∈ Cn p×p, z ∈ Cn p×1, b ∈ Cn p×1, we can carry out the following transformation
of A:

A↔M = A0I0 +A1I1 + ...+AnIn +A12I1I2 + ...+An−1nIn−1In + ...+A1...nI1...In (24)

where A0, ..., A1...n ∈ Rp×p and the expressions for the I ′ks are given in theorem 1 (note that in the formula
the 1′s represent real identity matrices of dimension p× p). The matrix equation becomes:

M︸︷︷︸
2np×2np

 x0

...
x1...n


︸ ︷︷ ︸

2np×1

=

 b0
...

b1...n


︸ ︷︷ ︸

2np×1

(25)

where x0, ..., x1...n ∈ Rp×1 and b0, ..., b1...n ∈ Rp×1.

Eq. 25 is solved as a real-valued matrix equation for x0, ..., x1...n. We can follow the exact same approach
for other linear algebra algorithms like matrix inversion and eigenvalue problems. A similar strategy is used
by Turner in his quaternion toolbox.30

Overall Procedure

The multicomplex step differentiation procedure can be summarized as follows:

1. Convert the function code to support multicomplex arithmetic. In Matlab, no change in the code is nec-
essary and the user just needs to include the multicomplex toolbox in the path. However, in a Fortran
code, all real types of the independent variables should be substituted with multicomplex declarations.
In addition, if the value of any intermediate variable depends on the independent variables via assign-
ment or via argument association, then the type of those variables must be changed to multicomplex
as well (an easier yet memory inefficient option is to declare all variables multicomplex). The user
enables overloading by simply inserting a ‘use module’ command for the module that contains all the
multicomplex extensions and definitions. All these manipulations imply obviously that the user must
have access to the source code that computes the value of the function. To avoid having several versions
of the same code supporting different types of variables, one can use a preprocessor that automatically
produces a single code that can be chosen to be real or multicomplex at compilation.

11

cite peer-reviewed, updated version: 
Lantoine, G., Russell, R. P., Dargent, T., “Using Multicomplex Variables for Automatic Computation of High-order Derivatives,” 
ACM Transactions on Mathematical Software, Vol. 38, No. 3, Article 16, April 2012, 21 pages,  
DOI = 10.1145/2168773.2168774, http://doi.acm.org/10.1145/2168773.2168774



2. Apply small perturbation steps to the imaginary directions of the desired independent variables and
compute the resulting function value.

3. Retrieve the corresponding partial derivatives using Eq. 16 and Eq. 17.

4. Repeat steps 3-4 for all variables and all partial derivatives.

For a real-valued function of p variables, this technique requires pn function evaluations to compute all the
partial derivatives up to nth order, compared to (np+ 1)n and (2np+ 1)n function evaluations respectively
for forward and central differences. If symmetries are considered, the number of function evaluations can be
reduced by almost half (this is also true for finite differencing). More generally, if the sparsity pattern of the
partial derivatives is known, our approach allows us to compute only the relevant non-zero components to
save compute time.

In summary, our method shares with automatic differentiation the capability of computing systematically
accurate partial derivatives with respect to desired input variables. However, a major difference is that the
user has control on which components they want to compute by applying a perturbation step on specific
imaginary directions and computing a series of multicomplex function evaluations. From that point of view,
our approach is close to finite differences. Therefore, the multicomplex method could be classified as semi-
automatic differentiation.

APPLICATIONS

Three examples of derivative-based applications illustrate the multicomplex step technique. The first one
is a formal benchmark example. The next two are practical applications from the astrodynamics area. In all
cases we compare the accuracy and computational cost between our approach and current other approaches,
namely analytical differentiation, automatic differentiation and finite differences. In this section all the com-
putations are performed on a PC in Fortran 90 with an optimization level of 2. Two different automatic
differentiation tools are selected for the numerical comparisons:

• the new package AD02 from the HSL library. This tool relies on operator overloading to carry along
derivative computations to the arithmetic operators and intrinsic functions.7 It is one of the only auto-
matic differentiation tools that allows the computation of high-order derivatives (i.e. order greater than
two).

• the TAPENADE software, developed at INRIA (Institut National de Recherche en Informatique et
Automatique). Contrary to AD02, it is a source transformation tool. Given a source program, this tool
returns the first-order differentiated program.6 By applying TAPENADE several times, the code for
higher-order derivatives can be obtained as well. Note that this method for computing higher-order
derivatives is somewhat tedious and not optimal from a complexity point of view.

We caution readers not to necessarily take the following results as an indication of the performance that
could be expected on their code. Specificities of the problems play an important factor and some tools might
perform better or worse depending on the applications.

Simple Mathematical Function

First, to check the correct implementation of the multicomplex method, the same simple one-dimensional
function of section (Eq. 19) is used for the comparisons. Sensitivities up to third order are computed. From
Figure 3, the multicomplex and finite difference derivatives are computed using a step size of 10−40 and 10−4

respectively. The analytical expressions of the derivatives are found with the help of the algebraic manipula-
tion software, Maple, and optimized by introducing temporary intermediate variables to eliminate redundant
computations. Table 1 summarizes the results of the comparison.
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Table 1. Simple function example.

Method 3rd-order Max. relative Relative
derivative difference computational time

Analytical -9.33191003819869 0.0 1.0
MultiComplex Step -9.33191003819869 1.9 10−16 37

AD02 -9.33191003819869 3.8 10−16 149
TAPENADE -9.33191003819869 3.8 10−16 8

Finite Differences -9.33197963348675 7.4 10−6 3.5

Among methods that provide exact derivatives, the analytical and TAPENADE methods are by far the
fastest. This is explained by the fact that they produce dedicated optimized code for the derivatives. However
some implementation work to obtain the executable programs for computing the derivatives is necessary
for those two methods. While this effort is significant for the analytical approach, this preliminary step is
straightforward in the TAPENADE case as the source code needs only to be processed by the tool without
any changes. On the other hand, the multicomplex and AD02 methods require very little change in the source
code, but are slower for this simple test case. We point out that the multicomplex method is less computational
intensive than AD02, which shows the advantage of our method among overloading techniques. Finally, we
can say that finite difference is fast, but exhibits very poor accuracy. In this particular example, the small
difference in computational speed between the analytical and finite difference cases is explained by the fact
that the analytical expressions of the derivatives are quite complicated in comparison to the function (Eq. 19)
alone.

Gravity Field Derivatives

For this example, the first-, second- and third-order partial derivatives of the gravitational potential of a
non-spherical body with respect to cartesian coordinates are considered. These sensitivities are important for
solving a variety of problems in satellite geodesy and navigation. For instance, the gravitational acceleration
at any given location is obtained by computing the gradient of the potential. This acceleration is required for
accurate numerical integration of satellite orbits. Additionally, the second- and third-order derivatives can be
used in a variety of targeting or optimization problems that arise in spacecraft guidance and navigation.

The analytical method we employ is based on the classical spherical harmonic formulation where the
derivatives are formed by exploiting recurrence relations on Legendre polynomials.31 Finite differencing is
not considered for this example as we saw in Figure 3 that its accuracy is extremely poor for high-order
derivatives.

We use a 20 × 20 lunar gravity field model taken from GLGM-2 data,32 which corresponds to 440 terms.
The position vector in cartesian coordinates where the derivatives are estimated is (x, y, z) = (2000, 0, 0) km,
which corresponds to an altitude of about 300 km from the surface of the Moon. A step value of h = 10−40

is taken in our multicomplex method. We use tricomplex numbers since derivatives are computed up to the
third-order.

The resulting accuracy and computational comparison is made in Table 2. A sample of the third-order
derivatives (corresponding to the (1,1,1) index) produced by each method is given, as well as relative com-
putational time and maximum relative difference of all partial derivatives with respect to the analytical ex-
pressions. We know that the potential is a solution to Laplace’s equation. Then, in cartesian coordinates,
∇2U = Uxx + Uyy + Uzz = 0. A good indicator of the accuracy of each method is therefore the deviation
from zero of the corresponding Laplacian.

13

cite peer-reviewed, updated version: 
Lantoine, G., Russell, R. P., Dargent, T., “Using Multicomplex Variables for Automatic Computation of High-order Derivatives,” 
ACM Transactions on Mathematical Software, Vol. 38, No. 3, Article 16, April 2012, 21 pages,  
DOI = 10.1145/2168773.2168774, http://doi.acm.org/10.1145/2168773.2168774



Table 2. Lunar gravitational potential example.

Max Relative
Method Sample 3rd-order Sensitivity Laplacian difference comp.

time
Analytical −4.239541972305253 10−12 −8.3 10−25 0.0 1.0

MultiComplex Step −4.239541972305250 10−12 −4.1 10−25 6.0 10−15 20.9
AD02 −4.239541972305255 10−12 −1.1 10−24 2.9 10−15 154.9

TAPENADE −4.239541972305257 10−12 −1.6 10−24 2.6 10−15 30.1

As expected, the analytical method is by far the fastest. Its implementation relies on a very efficient use of
recurrence relations to reduce as much as possible the amount of computations. Therefore this method is very
specific and not representative of the general situation (see next example for instance). It is included here only
to provide a benchmark as any other method is likely to be far slower. Taking that into account, we can see that
multicomplex step method is also accurate to machine precision while being reasonably fast (only one order
of magnitude slower). In comparison, AD02 produced very accurate estimates, but it was more computational
intensive, more than seven times slower than the multicomplex method. In this example it is apparent that the
computational overhead of AD02 is again significantly larger than that of the multi-complex method. Finally,
contrary to the previous simple example, TAPENADE is also slower than the multicomplex method. This
may come from the multidimensional aspect of the problem as TAPENADE does not take advantage of the
symmetries and computation redundancies of higher-order derivatives (TAPENADE is designed to produce
first-order derivative code only.).

Trajectory State Transition Matrix

Another application is presented for a low-thrust spacecraft trajectory problem where the multicomplex
approach is used to generate first- and second-order state transition matrices.33 The trajectory model con-
sists of an orbiting satellite subject to the Sun gravitational force and a constant inertial thrust. This kind
of dynamical model often occurs in direct optimization methods when a low-thrust trajectory is divided into
several segments of constant thrust.34 To optimize the resulting set of thrust variables, partial derivatives of
the final state vector with respect to the initial state vector of a given segment are usually required to help
the solver converge toward an optimum. These sensitivities are the components of the so-called State Tran-
sition Matrices which map derivatives from one time to another on a given continuous trajectory.35 Because
such optimization problems are highly non-linear in nature, it is recommended to compute accurate first-and
second-order derivatives to enable robust convergence.36 The objective of this example is therefore to com-
pute the first- and second-order state transition matrices of one low-thrust trajectory segment.

Table 3. Data of the trajectory propagation
Parameter Value

Gravitational Parameter 1.3267 1020m3s−2

Initial radius 1.496 1011 m
Initial velocity 2.9783 104 m/s

Initial mass 680 kg
Thrust Magnitude 0.56493 N
Thrust Direction 0o

Isp 5643 s
Time of Flight 6 days

Numerical data used for the propagation are given
in Table 3 and are mainly taken from Oberle.37

The motion is two-dimensional and restricted to be
in the heliocentric plane. The satellite starts in
a circular orbit with the position and velocity of
the Earth. The variables to be integrated are then
the position and velocity states (four polar coordi-
nate variables), the satellite mass (1 variable) and
the control variables (two variables). The trajectory
propagation is therefore a seven-dimensional integra-
tion.

The standard analytical method integrates directly the state transition matrices from analytical derivatives
of the equations of motion.35 This results in a very large system to integrate with 7 + 7 ∗ 7 + 7 ∗ 7 ∗ 7 = 399
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dimensions. Symmetry and sparsity patterns can be exploited to reduce this number to at most 5 + (7 ∗ 5) +
5∗ (7∗7 + 7)/2 = 180 dimensions (noting that the control is static). Because such improvements are tedious
to implement in the analytic integration of the STMs, the numbers in Table 4 reflect the dense and straight-
forward implementation with 399 terms. For the multicomplex step differentiation and finite differences,
the numerical STM partial derivatives are computed by integrating the original 7-dimensional propagation
problem several times for different perturbation steps. In these cases, unlike the analytic case, the sparsity
and symmetry patterns of the STMs are easily implemented, and we emphasize that the associated benefit
is reflected in the compute times presented in Table 4. For all methods a standard 7th-order Runge-Kutta
integrator is used to generate the results. Relative and absolute integration tolerances are set to 10−13 for
maximum accuracy. Step sizes of h = 10−40 and h = 10−4 are taken for the multicomplex step and finite
difference methods respectively. For finite differences, this step size is obtained after several trial-and-errors
to find the best accuracy (this trial and error effort is not included in the speed results). Standard central
finite difference formulas are used in the calculations. The reported times and max relative differences re-
flect the calculation of the full first and second order STMs. The sample spherical component is the term ∂2rf

∂2r0
.

Table 4. State transition matrix example for low-thrust spacecraft trajectory.

Method Sample 2nd-order STM Max. relative Relative
Component difference computational time

Analytical −2.092290564266828 10−2 0.0 1.0 ∗

MultiComplex Step −2.092290564266829 10−2 5.3 10−15 1.7
AD02 −2.092290564266833 10−2 4.0 10−14 4.4

TAPENADE −2.092290564266826 10−2 3.7 10−14 2.1
Finite Differences −2.092290785071782 10−2 2.8 10−6 4.5

We can see that the analytical method is again the fastest, but by a much smaller margin than the previous
example. This is explained by the fact that a large coupled system has to be integrated. The multicomplex
approach is still accurate to machine precision with only a very slight computational handicap. Considering
the effort needed to implement the analytical approach, the competitiveness of our approach becomes evident.
By comparison, both AD tools, AD02 and TAPENADE, are slower than the MCX approach. Also note that
minor changes in the code were required to use AD02 and TAPENADE as some matrix operations (like the
matmul function) are not supported by these tools. Finally, Finite Difference is clearly the least attractive
approach. Its accuracy is poor and it is the slowest of all methods.

In the previous two real-world applications, we find the MCX approach faster than that of AD02 and
TAPENADE. However the improvements vary from 260% to 740% for AD02, and from 20% to 30% for
TAPENADE, indicating a need to further characterize both applications and other implementation strategies
and tools.

CONCLUSION

Many applications in scientific computing require higher order derivatives. This article describes a promis-
ing approach to compute higher order derivatives using multicomplex numbers. The theoretical foundation
and the basic formulation of this new multicomplex step differentiation method is rigorously introduced. This
method is a natural extension to the complex step method recently introduced and now in wide use. The main
contribution here is the extension of the complex step derivative to arbitrary order while maintaining the
machine precision accuracy that makes both the complex step (for first-order derivatives) and automatic dif-
ferentiation so attractive. The main results of the paper are formula giving general partial derivatives in terms
of imaginary coefficients of multicomplex function evaluations. The main advantage of these expressions is

∗this time can likely be reduced by half if the aforementioned symmetries are considered.
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that they entail no subtractive cancellation error, and therefore the truncation error can be made arbitrarily (to
machine precision) small.

In addition, an efficient implementation strategy using operator and function overloading is outlined. The
particular representation of multicomplex numbers which shares the same formal structure as complex num-
bers makes this overloading particularly simple. The implementation is tested with a simple benchmark func-
tion as well as two real-world numerical examples using complicated function calls. The resulting derivative
estimates are validated by comparing them to results obtained by other known methods. In both cases of the
complicated function calls, the multicomplex method is found to outperform both automatic differentiation
and finite differences.

In summary, the multicomplex step method provides a complete differentiation system capable of generat-
ing exact high-order partial derivative models for arbitrarily complex systems. This technique combines the
accuracy of automatic differentiation with the ease of implementation of finite differences, while being less
computationally intensive than either method. We also find that the multicomplex approach is characterized
by a shorter development time than that of automatic differentiation, as the theory and code development of
the multicomplex technique described in this paper required only a few months to implement. Considering
all these advantages the multicomplex method is therefore expected to have a broad potential use.

Future work will apply the multicomplex method to various optimization techniques, such as the second-
order Newton’s method, where Jacobian and Hessian information is needed. In order to further automate the
implementation, the next step is to develop a script that generates automatically the required changes in a
code to make it compatible with multicomplex numbers (variable type declarations, ’use’ statements, etc).
Finally, we intend to exploit the inherent parallelism of the multicomplex step method to further reduce the
associated computational cost.
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APPENDIX 1

We give here the proof of Theorem 1. Let z = z1 + z2in be an element in Cn. First, by quickly extending
the proof of theorem 28.2 in the book of Price,24 we can say that the set of 2x2 multicomplex matrices of
order n− 1 of the form

M(z) =
(
z1 −z2

z2 z1

)
= z1

(
1 0
0 1

)
+ z2

(
0 −1
1 0

)
(26)

is an isomorphism. In fact, clearly the 0 and identity matrix are of this form. Also the sum and difference of
matrices are of this form as well. Regarding the product of matrices, we can readily see that(

z1 −z2

z2 z1

)(
w1 −w2

w2 w1

)
=
(

z1w1 − z2w2 z1w2 + z2w1

−(z1w2 + z2w1) z1w1 − z2w2

)
(27)

which is also of this form.

Next, the result of the theorem can be deduced by recurrence: z1 is equivalent to
(
z11 −z12

z12 z11

)
. In the

same way, z2 is equivalent to
(
z21 −z22

z22 z21

)
. Incorporating these isomorphisms into Eq. 26, we can say that
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z is equivalent to


z11 −z12 −z21 z22

z12 z11 −z22 −z21

z21 −z22 z11 −z12

z22 z21 z12 z11

.

The theorem is then proven by repeating the same operation until a real matrix is recovered. Note that by
stopping one step before, we can represent multicomplex numbers by complex matrices as well.

APPENDIX 2

Let the sets

Dk,1 = (z1 + z2in)ek,1/(z1 + z2in) ∈ Cn

Dk,2 = (z1 + z2in)ek,2/(z1 + z2in) ∈ Cn (28)

where ek,1 = 1+ikik+1
2 , ek,2 = 1−ikik+1

2 for k = 1, ..., n− 1 are idempotents elements in Cn.

From Price,24 we can state that two elements in Cn are divisors of zero if and only if one is Dk,1 − 0 and
the other is in Dk,2 − 0 for any k = 1, ..., n− 1.
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