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As humans explore further into the solar system, small bodies such

as asteroids and comets serve as critical stepping-stone destinations. Highly

accurate navigation about these small bodies is critical for any future missions,

and as a result is listed prominently among NASA’s future goals in the NASA

Office of Chief Technologist Roadmap. Due to the long communication light-

time delays with the Earth, advances in small body navigation may enable

missions currently not feasible, as well as significantly reduce dependence on

ground resources. Increased operational agility will enable rapid decisions and

opportunistic science measurements not possible in previous missions to small

bodies.

To assist NASA in accomplishing future small body navigation goals,

several important advances are made. First, the effectiveness of modern orbit

estimation techniques is investigated, with the higher order Additive Divided-

Difference sigma point Filter (ADF) implemented and used along with the
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standard Extended Kalman Filter (EKF) to estimate the spacecraft state from

optical small body surface landmark measurements. The ADF performs con-

sistently better than the EKF in the simulations performed, with increasing

improvement for higher levels of initial state error and longer intervals between

photos of the surface.

Second, a new method is created to improve onboard navigation filter

performance in diverse and rapidly changing dynamical environments. The

approach is to precompute a process noise profile along a reference trajectory

using consider covariance analysis tools and filters. When used in an onboard

navigation filter, the precomputed process noise allows the filter to account for

time- and state-dependent perturbations in the dynamics. The new method

also obviates the need for most or all traditional manual tuning of the filter,

and provides significantly improved representation of the state uncertainty.

Finally, a Simultaneous Localization And Mapping (SLAM) algorithm

is employed to estimate the spin state of a tumbling small body (which are

expected to be a significant percentage of the small bodies in the solar system),

as well as the spacecraft state and surface landmark locations. For the small

body characterization phase of the Rosetta mission, the state estimates con-

verge successfully for large initial state errors. The SLAM algorithm remains

effective for a range of small body spin states and masses that correspond to

expected tumbling small bodies throughout the solar system. The SLAM algo-

rithm is successfully applied to high fidelity independently simulated imagery

of a tumbling small body generated by the European Space Agency, and a

method for initializing the small body landmark locations is provided.
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Chapter 1

Introduction

Navigation about small bodies such as asteroids and comets remains

a challenging engineering problem. Similarities to the ubiquitous terrestrial

navigation problem (e.g. autonomous robots, vehicles, and unmanned aerial

vehicles) include the use of optical and range measurements, as well the need to

identify and estimate the locations of landmarks used for navigation while also

estimating the robotic vehicle state. The primary differences between the two

problems are the magnitude of the distances to the landmarks, the dynamical

environment, and the types of landmarks used (i.e. surface features on a small

body versus hallway corners and traffic intersections). These differences drive

the need for advances in navigation capabilities for spacecraft approaching,

orbiting, and landing on small bodies. The 2015 NASA Technology Roadmap

[28] describes the importance of further developing navigation technology for

future spacecraft missions:

Technology developments in Position, Navigation, and Timing (PNT)
will benefit both human and robotic spaceflight. More precise po-
sitioning will facilitate higher quality data return from science in-
struments, such as high-resolution cameras, and will enable mission
operations concepts, such as precise landing and deep space forma-
tion flying, that are not possible with today’s navigation capability.
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Spacecraft have been visiting small bodies since 1986, when the Giotto

spacecraft flew by the Halley comet [39]. The first flyby of an asteroid took

place when Galileo flew by 951 Gaspra on its way to Jupiter in October of 1991

[130]. Using optical navigation techniques previously pioneered for planetary

exploration, the Galileo navigation team reduced the uncertainty of the Galileo

position relative to Gaspra during the approach, enabling the spacecraft to

obtain images much closer to the body than would have otherwise been possible

given the 5 degree field-of-view onboard camera [129, 60].

Since those first missions, there have been a total eight flybys of aster-

oids and seven close flybys of comets. The use of optical navigation for small

body flybys would eventually lead to software developed by the Jet Propul-

sion Laboratory (JPL) known as AutoNav, which has been employed for the

Deep Space 1, Stardust, and Deep Impact missions (as well as the follow-on

missions Stardust-NExT and EPOXI) [17]. The successful use of AutoNav

for these flyby and impact missions at asteroids and comets has proven that

autonomous navigation can be achieved for small body flybys.

While there have been fifteen flybys of small bodies, only five small bod-

ies have been orbited by spacecraft: Eros, Itokawa, Vesta, Ceres (which may

be more appropriately labeled a dwarf planet than a small body), and Comet

67P/Churyumov-Gerasimenko. The first spacecraft to orbit and land on a

small body, NASA’s NEAR-Shoemaker mission orbited the asteroid Eros from

February 2000 to February 2001 before landing on the surface, used ground-in-

the-loop navigation that employed standard DSN radiometric tracking as well

as 47 manually identified crater landmarks on the surface. [137, 3]. The orbit
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determination used data arcs of 5 and 30 days within a Batch Least Squares

(BLS) formulation [121]. The NEAR Laser Ranging instrument was also em-

ployed as a secondary source for orbit determination, but it was primarily used

for shape model generation of the body. The final landing of the spacecraft

on the surface was performed open-loop, as the light-time delays would make

ground-based navigation impossible.

The Hayabusa mission flown by the Japanese Space Agency (JAXA)

arrived at the asteroid Itokawa in September 2005, and landed on the surface in

November 2005 to collect samples that would eventually be returned to Earth

in June 2010. Hayabusa employed two optical navigation cameras (narrow

and wide angle), two laser ranging systems (for above and below 50 meters

altitude), and an artificial landmark dropped to the surface from the spacecraft

at 30 meters altitude. The measurements from these sensors were processed

using an Extended Kalman Filter (EKF) [121] to perform ground-based orbit

determination [68]. An experimental autonomous optical navigation (AON)

capability for descent and landing on Itokawa was developed for Hayabusa [143,

69], but ground-in-the-loop navigation was used as the primary navigation

method (with malfunctions in the experimental AON capability also limiting

its accuracy) [51].

The Dawn mission orbited the asteroid Vesta from July 2011 to Septem-

ber 2012, and then made its way to its final home in orbit about Ceres, arriving

in March 2015. At both bodies, radiometric tracking combined with optical

navigation were used to performance orbit determination [80], with the mea-

surements processed on the ground using BLS filtering. Optical landmarks
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were constructed using the technique known as stereophotoclinometry (SPC),

first introduced by Gaskell using optical data from the Eros mission [43].

The ESA mission Rosetta arrived at comet 67P/Churyumov-Gerasimenko

in August 2014 and deployed the lander Philae in November 2014. The mission

will end with a controlled descent to the comet surface on September 30, 2016.

Navigation for the Rosetta is performed with a Square Root Information Fil-

ter [47], processing both radiometric tracking (2-way Doppler and range) and

landmark observations from images of the surface taken by onboard cameras

[86]. Initially a manual identification and selection process was used for the

landmarks, employing a GUI to aid in the process. Eventually an automated

process employing the SPC technique was employed, dramatically reducing the

ground operations workload [96]. All navigation is performed on the ground.

The limited accuracy of the ground-in-the-loop navigation also restricted the

achievable landing accuracy of the lander Philae, hindering Rosetta mission

planners when selecting a landing site (as no landing site on the Comet’s sur-

face was smooth and large enough to meet ideal landing conditions for a blind

ballistic approach).

A common fact emerges from the four missions that have orbited a

small body: all use ground-based orbit determination tools as the primary

navigation method. This ground-based method limits navigation accuracy,

and can require extensive ground resources. Autonomous navigation has the

potential to provide significantly greater accuracy, as well as reduce required

ground resources. Missions that require pinpoint landing on the order of less

than one meter become possible [19], allowing science goals and possibly com-
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mercial and planetary protection goals to be achieved. In particular, science

goals of understanding the origins of the solar system are strongly assisted by

accurate autonomous navigation, as it enables spacecraft to land at very spe-

cific locations a small body surface. Pinpoint landing is especially important

because other means of positioning science instruments on the surface, such as

rovers and walking by humans, are not practical in the ultra-low gravitational

environment of most small bodies. Additionally the rugged surface of small

bodies typically results in small and sparse safe landing spots, and the weak

gravity field results in a very limited range of allowable landing speeds [110].

The benefits and types of missions enabled by accurate autonomous

navigation for missions orbiting and landing on small bodies has motivated

researchers and mission planners to pursue this technology [19, 63, 32], includ-

ing working on enhancements to AutoNav to enable autonomous navigation

for these missions [98]. The 2015 NASA Technology Roadmap [28] also em-

phasizes the importance of advances in autonomous navigation capabilities:

As NASA’s human exploration and science missions progress far-
ther from Earth, the Agency must minimize and eventually over-
come the impacts of latency on the navigation and maneuver plan-
ning or execution for varied space systems, such as spacecraft and
planetary rovers. In the near-term, gradually increasing levels of
autonomous navigation capabilities will allow platforms to go

longer between time and state vector updates from the

Earth. A significant benefit to be attained in this case will be a
reduction in the burden of routine navigational support. ... An ad-
ditional benefit that will accrue from having autonomous onboard
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navigation and maneuvering capabilities will be an increase in a
platform’s operational agility, enabling near-real-time re-planning
and opportunistic science. In the longer term, fully autonomous
navigational capabilities will enable classes of missions that

would otherwise not be possible due to round-trip light

time constraints.

Figure 1.1 illustrates how advances in various navigation technologies

provide new near- and far-term capabilities for future NASA missions, includ-

ing those to small bodies. A significant near- and far-term component of this

development timeline is the further advancement of estimation filters used for

spacecraft navigation. It is this need for development of estimation filters and

greater autonomy for missions orbiting and landing on small bodies that pro-

vides the primary motivation and objective of the research described in this

dissertation: to obtain innovative filtering solutions to the general problem of

autonomous navigation for spacecraft missions orbiting and landing small bod-

ies. There is a particular focus on challenges that small body missions such as

the European Space Agency (ESA) Rosetta mission and NASA’s OSIRIS-REx

mission have faced or will face in the near future.
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Figure 1.1: NASA Roadmap Position Navigation and Timing Development
Timeline [28]

1.1 Optical Landmark Measurement Model

Many types of measurements can be used for navigation about small

bodies, including radar, lidar, and optical measurements. Using cameras to

produce optical measurements has strong advantages in terms of cost and ease

of implementation. The optical measurements are the line-of-sight direction

vectors from the spacecraft to landmarks on the surface of the small body.

Surface landmarks can be identified in a variety of ways:
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• Natural surface features such as craters and ridge-lines can be manually

selected by the mission analyst or operator using a graphical user in-

terface [44, 27], with the goal of consistently selecting features that are

clearly identifiable on the surface in many different lighting conditions.

• Standard computer vision techniques such as SIFT or SURF [58] can be

employed to identify consistent landmarks.

• The central points of “maplets” generated using the stereophotoclinom-

etry (SPC) method (a correlation technique that uses detailed topo-

graphic and albedo maps of the surface) can serve as landmark observa-

tions [44, 81].

In the following chapters, the landmark body-fixed locations are either as-

sumed known or are corrected by the estimation process. The term “body-

fixed” refers to the frame fixed to and centered on the small body (not the

spacecraft).

To compute the expected optical measurement for a particular land-

mark, first the vector from the spacecraft to the jth landmark in the body-fixed

frame is calculated as

Oj = Lj − rbfsc (1.1)

where Lj is the body-fixed landmark position, and rbfsc is the Cartesian space-

craft position in the body-fixed frame. This vector can be transformed to

inertial coordinates using the rotation matrix Rbf2i, which is computed using

the small body orientation parameters at the picture time. The spacecraft-

fixed frame is similarly defined by the rotation matrix Ri2sc, and the camera

8



frame is defined relative to this spacecraft-fixed frame as Rsc2cam (with the

camera boresight along the camera frame z-axis). Thus the complete rotation

matrix that converts inertial vectors into the camera frame is

Ri2cam = Rsc2camRi2sc (1.2)

The vector from the spacecraft to the jth landmark in camera coordinates is

Ocj
= Ri2camRbf2iOj (1.3)

which is transformed into the two-dimensional camera focal plane using the

gnomonic projection (mapping points on a sphere onto a plane) [95][
xj
yj

]
= f

Ocj
[3]

[
Ocj

[1]
Ocj

[2]

]
(1.4)

where f is the camera focal length (typically in millimeters). These focal

plane coordinates xj and yj are transformed into pixel and line values, i.e. the

horizontal and vertical pixel location within the picture, with the equation
[
pj
lj

]
=
[
Kx Kxy Kxxy

Kyx Ky Kyxy

]  xj
yj
xjyj

+
[
p0
l0

]
(1.5)

where the elements of the K matrix are the vertical and horizontal pixel densi-

ties of the sensor array (typically in pixels per millimeters), and are calibrated

using star fields before arrival at the small body. The center pixel and line

values are p0 and l0, respectively. Note that Eq. (1.5) can produce values in

increments smaller than individual pixels, as modern image processing capabil-

ities can generate landmark center values at sub-pixel precision. The process

of using these landmark measurements to estimate the states of interest is

described in detail in previous studies [19, 90].
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1.2 Forces Acting On Spacecraft Near Small Bodies

It is important to understand the dynamical environment and forces

that can affect the trajectory of a spacecraft in the vicinity of small bodies

when designing navigation methods for missions to these small bodies. The

dynamics of spacecraft orbital motion about small bodies such as asteroids,

comets, and small planetary moons can be complex due to the variety of forces

that act on spacecraft operating near these bodies. An exploration of these

forces and the relative magnitudes for different scenarios is presented here,

with a focus on those forces most relevant for orbital motion in navigation

simulations (versus the design of the mission trajectory to and around the

small body).

First each of the individual forces are described, from the dominant

and relatively benign central body force to the more exotic and vastly more

complex forces such as outgassing. Next the relative impact of these forces on

spacecraft motion are described for different spacecraft locations relative to

the small body, small body locations within the solar system, and small body

sizes. Understanding the relative magnitude of these forces is important for

navigation analyses, allowing the analyst to include only those forces relevant

to a particular small body mission scenario. For more information on the

forces that affect the dynamics of spacecraft about larger bodies such as dwarf

planets Pluto and Ceres (and other spherical planets and moons), see Russell

[104] and Scheeres [110].
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1.2.1 Individual Forces on Spacecraft

The individual forces that can affect the trajectory of a spacecraft are

described below. The models used for these forces are provided, allowing the

analyst to incorporate the forces in simulations and estimation analysis.

1.2.1.1 Central Body Force

The central body gravitational force acting on the spacecraft is

FCB = −mGM

r3 r (1.6)

where m is the spacecraft mass, GM is the gravitational constant of the small

body, r is the vector from the center of mass of the small body to the spacecraft

center of mass, and r is the magnitude of the r vector. For small bodies, the

GM is many orders of magnitude smaller than a typical planetary GM , and

thus the central body gravitational force is many orders of magnitude smaller

than for any planetary size body. The central body force can also be described

as the gradient of the central body gravity potential function,

UCB = GM

r
(1.7)

where FCB = m∂UCB

∂r
.

For a given spacecraft mass, the central body force grows larger with

increasing small body mass as a linear function. The central body force also

increases with decreasing distance from the spacecraft center of mass to the

central body center of mass according to the inverse square law. Thus, for a

given percentage change in small body mass M and the distance r, the overall

force will be more sensitive to changes in the distance r.
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1.2.1.2 Gravity Perturbations from Non-Uniform Gravity Field

The term “gravity perturbations” refers to all non-central body gravity

forces acting on a spacecraft. The potential function of these forces is described

using spherical harmonic coefficients [121, 62] according to the equation

Ugrav =GM
r

{
N∑
l=1

(
ae
r

)l
Pl(sinφ)Cl,0+

N∑
l=1

l∑
m=1

(
ae
r

)l
Plm(sinφ) [Clm cosmλ+ Slm sinmλ]

} (1.8)

where N is the maximum degree and order of the expansion, ae is the reference

distance (typically chosen as the average equatorial radius of the body, which

may not be obvious for a small body), φ is the geocentric latitude of the

spacecraft, and λ is the geocentric longitude of the spacecraft. Pl are Legendre

polynomials [54] with degree l and argument sinφ, and Plm are Legendre

associated functions of degree l and order m, also with argument sinφ. The

terms Cl,0, Clm, and Slm are the mass property coefficients that describe how

the mass distribution of the body translates into the disturbance potential

(and thus force).

Typically the normalized values for the Legendre polynomials Pl, Leg-

endre associated functions Plm, and the mass property coefficients Clm and Slm

are used to avoid numerical issues. The values for the Legendre polynomials

and associated functions grow and the mass property coefficients shrink for

higher degree and order indices.
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The force acting on the spacecraft is the gradient of this potential,

multiplied by the spacecraft mass:

FGravPert = m∇Ugrav (1.9)

The total gravitational potential is a combination of the central body gravity

potential and the above disturbing potential:

U(r) = UCB(r) + Ugrav(r) (1.10)

Because most small bodies have approximately uniform density (as

compared to larger planetary bodies), the spherical harmonic coefficients that

allow the computation of the gravity perturbations for a given spacecraft lo-

cation and mass are primarily dictated by the shape and size of the small

body. To obtain accurate estimates for these spherical harmonic coefficients, a

spacecraft orbiting the body is needed. However, the coefficients are needed to

understand the forces acting on the spacecraft in order to design satisfactory

trajectories. As a result of this ”chicken and egg” problem, a boot-strapping

method of slowly approaching the small body in stages is used to estimate the

spherical harmonics values, with the estimated values from one stage needed

to design the trajectory for the following stage. Also required are extensive

Monte Carlo analyses to determine the realistic limits of those coefficients prior

to the spacecraft approach of the small body [83].

Spherical harmonics are only one way of representing the non-uniform

gravitational field of a body however. A significant problem with the spherical

harmonic representation is that if the perturbation field point is below the
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Brillouin sphere radius, the series used to compute the perturbation diverge.

The Brillouin sphere is defined as the sphere centered at the body center of

mass with radius equal to the point on the body furthest from the center of

mass (i.e. the smallest sphere that completely contains the body). As a result

of this deficiency in the spherical harmonic approach, which is primarily an

issue for spacecraft approaching the surface of non-spherical small bodies [72],

the representation used most commonly when the spacecraft approaches and

enters the Brillouin sphere is the polyhedron model [110, 134]. This method

is a closed form solution that uses constant density polyhedrons to obtain the

gravitational potential and acceleration on spacecraft via a surface integral of

the plate model representing the small body surface. Other possible gravita-

tional representations that also work below the Brillouin sphere include the

interior gravity field, mass concentration methods, and various interpolation

techniques [120, 105, 5, 37, 26].

However, the focus of the navigation analysis in this dissertation is

for mission phases in which the spacecraft is outside the Brillouin sphere.

The spacecraft is outside the Brillouin sphere the vast majority of recent and

planned small body missions. Thus the spherical harmonic approach is suffi-

cient for the current scope.

1.2.1.3 Solar Radiation Pressure (SRP)

The force due to pressure from the solar radiation striking the spacecraft

is commonly computed for initial trajectory and navigation analysis using what
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is known as the “cannonball model” [127]:

FSRP = −SFsc
c

ν Cr A r̂sc2sun (1.11)

where c is the speed of light, A is the cross-sectional area of the spacecraft

exposed to sunlight, r̂sc2sun is the unit vector from the spacecraft to the sun,

ν is the eclipse factor, and Cr is the overall coefficient of reflectivity of the

spacecraft area lit by the sun. Cr ranges from 0 (in which case the spacecraft

would be perfectly transparent) to 2 (in which case the spacecraft would be a

perfect mirror). However, the standard “cannonball model” typically restricts

Cr between 1 and 2 [84, 107]. The eclipse factor ν ranges from 0 (in which

case the spacecraft is in the umbra of the small body and receives no sunlight)

to 1 (in which case the spacecraft is in full sunlight). SFsc is the solar flux at

the spacecraft’s distance from the sun, as computed by

SFsc = SFEarth ∗
(
rSunEarth
rsc2sun

)2
(1.12)

where SFEarth is the solar flux at one Astronomical Unit away from the Sun,

rSunEarth is the absolute distance from the Sun to the Earth, and rsc2sun is the

absolute distance from the spacecraft to the Sun.

More detailed models than the “cannonball model” exist, which take

into account the spacecraft attitude and shape model. These higher fidelity

models are used for analyses further along in the mission planning process [48].

Higher fidelity models can also include the solar radiation reflected off of the

small body’s surface that strikes the spacecraft. However, due to the very low

albedo of most small bodies, this force is typically negligible.
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For many types of missions to small bodies it is feasible to design tra-

jectories around the small body that never eclipse, due to the low gravity of

the small body. One example is the European Space Agency mission Rosetta

that is visiting Comet 67P/Churyumov–Gerasimenko. Thus, the eclipse fac-

tor ν never deviates from one in these missions. For missions in which a solar

eclipse is unavoidable, some analysis should be performed to determine the

effect of the eclipse on the spacecraft trajectory [103].

1.2.1.4 Third Body Perturbations (TBP)

The perturbing force on the spacecraft due to celestial bodies other

than the central small body is described via the equation

FTBP = m aSRP = m G
∑

All TB
MTB

(
rsc2tb
r3
sc2tb

− rcb2tb
r3
cb2tb

)
(1.13)

where G is the universal gravitational constant, MTB is the mass of the per-

turbing body, rsc2tb is the inertial position vector from the spacecraft position

to the perturbing body center of mass, rcb2tb is the inertial position vector

from the central body center of mass to the perturbing body center of mass,

and rsc2tb and rcb2tb are the corresponding magnitudes of those vectors [127].

The first term in the parenthesis of equation 1.13 is named the “direct” term,

as it is the direct gravitational acceleration on the spacecraft from the third

body. The second term in parenthesis is labeled the “indirect” term, as it is

the influence that the third body has on the spacecraft through the central

body.
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When considering the third body perturbation effects of the Sun or

other large celestial bodies such as the planets, it makes sense to continue

using a coordinate frame centered on the small body that the spacecraft is

investigating. However, when looking at binary systems of small bodies, in

which the secondary body is a substantial fraction of the primary small body,

a coordinate frame based at the barycenter of the two small bodies may be

the more appropriate choice for navigation analysis [122, 31].

1.2.1.5 Outgassing and Plumes

Comets present an additional challenge to spacecraft mission planners

and operators: outgassing. The volatiles that exist on comets can explosively

sublimate when the comet is close enough to the Sun, which can pose a signif-

icant hazard to spacecraft such as Rosetta that plan to investigate a comet as

it passes through perihelion. The distribution of volatiles on the surface and

below the surface is completely unknown to mission planners and operators,

so this force is the least predictable of all disturbances that can affect the

spacecraft.

Some general trends are known: comet outgassing becomes more active

as it gets closer to the sun, and the portion of the comet surface in sunlight as

it rotates is more active than the non-illuminated portion. A general model

for the outgassing force [110, 24] is given by

FOG = QjVOGAsch (êj · r̂sj)
r

r3 (1.14)
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where Qj is the ejecta mass flow rate at the spacecraft location, VOG is the

velocity of the outgassing particles at the small body surface, and Asc is the

surface area of the spacecraft exposed to these particles. h (êj · r̂sj) is a function

that computes whether the spacecraft is in the cone of ejecta based on the

inertial jet surface normal unit vector êj, the inertial unit vector from the jet

location to the spacecraft location r̂sj, and the half angle of the outgassing jet

cone δj, as described by the equation

h (êj · r̂sj) =
{

1 êj · r̂sj ≥ cos(δj)
0 êj · r̂sj < cos(δj)

(1.15)

The ejecta mass flow rate Qj is computed using the equation

Qj = Sf(θs)g(d)Q∗ (1.16)

where S is the relative intensity of the comet surface at the jet site, f(θs) is

the relative insolation of the jet site as a function of the angle between the jet

surface normal and sun direction, g(d) is the outgassing strength as a function

of the distance from the sun to the comet, and Q∗ is the mass ejection rate at

the surface when the comet is at 1 AU. f(θs) is defined by the equation

f(θs) = max
{

0
1− α(1− cos(θs))

(1.17)

where α is the controlling parameter for outgassing strength as a function of

solar insolation, which varies from 0 to 1. g(d) is the outgassing strength as

a function of the distance from the sun to the comet d, as described by the

emperically derived equation

g(d) = g0

(
d

d0

)−c1 [
1 +

(
d

d0

)c2]−c3

(1.18)
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where g0 = 0.111262, d0 = 2.808, c1 = 2.15, c2 = 5.093, and c3 = 4.6142. The

units for the argument d are in AU.

Note that the outgassing force is treated as an inverse square law in

equation 1.14, which is likely conservative because the force may drop off

significantly faster. Also note that the model provided above is simplistic

and not based on in situ measured comet models (which should change af-

ter the Rosetta team has had a chance to evaluate various models at Comet

67P/Churyumov–Gerasimenko). This model also assumes that the jets em-

anate radially outward from the surface and expand in a cone shape. Other

assumptions are that the gas is traveling much faster than the spacecraft rel-

ative to the comet, the spacecraft is relatively close to the comet, and the

location and unit vectors of the jets vary in time as the comet rotates.

Additional research was performed to advance the model of outgassing

for Comet 67P/Churyumov–Gerasimenko in anticipation of Rosetta’s arrival

in the Fall of 2014 [87, 70, 126]. One interesting conclusion from that analysis

is that in the maximum outgassing scenario, the pressure force exceeds the

gravitational attraction of the nucleus on the spacecraft in the cometocentric

direction of the Sun. Another interesting conclusion is that there may be sig-

nificant non-radial pressure forces from the outgassing acing on the spacecraft.

Thus, mission analysts were required to carefully study the outgassing effects

before launching the lander to the surface.
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1.2.1.6 Other Kinds of Forces

Other forces are known to exist at the surface of small bodies and

may affect a spacecraft at the surface. Electromagnetic forces acting on dust

particles, as well as the plume from the spacecraft thrusters during the landing,

may cause dust particles to impact the spacecraft [75, 99, 50]. Also possible are

impulsive forces propagated through the small body from the impact of other

bodies striking the surface [123, 7]. The surface may also “shake” if the body

is in non-uniform rotation, as the slopes and surface forces would be functions

of time, and could lead to the surface relaxing as the small body finds it’s way

to a rotational equilibrium [110]. Finally, there may be an effect known as van

der Waals cohesion between surface particles that affect the distribution and

mechanics of those particles, which may affect the movement of the lander on

the surface [111]. It is expected that these forces would likely be negligible

compared to the other forces described above, with the exception perhaps of

a celestial impact on the small body.

The non-gravitational force known as the Yarkovsky effect can alter

the small body’s orbit, but at time scales orders of magnitude longer than

the timelines of spacecraft missions [110]. Similarly, the Yarkovsky-O’Keefe-

Radzievskii-Paddack (YORP) effect modifies the small body’s spin state over

time scales much longer than of interest to spacecraft operators [110].

Another important force that can affect the motion of a spacecraft, and

thus navigation analysis, is onboard propulsion. Spacecraft maneuvers are not

considered part of the dynamical environment, but are critical to model: ma-
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neuvers are typically a large source of execution and knowledge error that

can significantly affect navigation capabilities. A wide range of execution and

knowledge errors can occur with different propulsive methods, from conven-

tional chemical engines that can modeled as impulsive changes in velocity to

low thrust ion engines [100] with much higher specific impulse (ISP). Readers

interested in the errors associated with maneuvers that can affect spacecraft

navigation are referred to Olson [90] and Gates [45].

1.2.2 Relative Magnitudes of Forces on Spacecraft

The individual forces described thus far can vary greatly in absolute

and relative magnitude for different spacecraft locations relative to the small

body, small body locations in the solar system, and small body sizes and

masses. Understanding the relative magnitudes of these forces is critical for

navigation and trajectory design analysis and planning. To better understand

the relative magnitudes of these forces, the system attributes that affect the

strength of the forces are systematically varied. The effects of each primary

perturbation for a range of different spacecraft and small body situations are

shown. The spacecraft mass is assumed to be 1422 kg, the surface area (for

both SRP and outgassing jet perturbations) is 6 square meters, and the SRP

coefficient of reflectivity is 1.1.

The asteroid Eros is used in most variation scenarios, as all information

needed for understanding the dynamical environment around Eros is publicly

available [66, 85, 113]. This information includes a detailed shape model, grav-

ity spherical harmonic coefficients, and the location within the solar system
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via a .bsp file that provides the ephemeris.1 The 4 by 4 gravity field coefficients

are used to compute the gravity perturbation forces. The NEAR Shoemaker

mission that visited Eros also serves as an ideal example of the challenges of

visiting small bodies with spacecraft, as the very low gravity of Eros meant that

the spacecraft could easily escape or crash into the surface of Eros with small

changes in velocity [136]. Thus, it is critical to understand the forces that can

affect the spacecraft motion. There are demanding navigation requirements

on small body missions, as knowledge of the mass, gravity distribution, and

spin state must be obtained and refined as the spacecraft approaches the body.

Other missions that are excellent examples include the Hayabusa mission to

Itokawa [106, 142], the Dawn mission to Vesta and then Ceres [6, 125, 64], and

the Rosetta mission to Comet 67P/Churyumov–Gerasimenko [109].

There have also been investigations of the interactions between these

forces, and how they affect the general solution for the averaged motion of

spacecraft orbiting small bodies [109, 29]. In particular, the relationship be-

tween SRP and gravity field perturbations, as well as how they affect the orbit

together, is presented in Scheeres [108].

1.2.2.1 Variations in Spacecraft Distance to Small Body

For a given small body size, shape, and location within the solar system,

the spacecraft’s location relative to the small body can heavily dictate which

forces dominate the motion of the spacecraft. In Figure 1.2, the magnitudes of

1http://naif.jpl.nasa.gov/pub/naif/pds/data/near-a-spice-6-v1.0/nearsp_
1000/data/spk/eros80.bsp
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the SRP, TBP, central body gravitation, and gravity perturbation forces are

plotted as a function of the spacecraft radial position from Eros. Of course the

gravity perturbations will also vary heavily with different spacecraft longitudes

and latitudes, but the plot gives an approximation of the relative magnitudes

of the forces.
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Figure 1.2: Forces on Spacecraft as Function of Spacecraft Radial Position
Magnitude

For the Eros example, the central body and non-central body gravi-

tational forces dominate the motion of the spacecraft when the spacecraft is

close to the surface (assuming that the small body is not abnormally close to

the sun or to another large celestial body). For reference, the dimensions of

Eros are 34.4 by 11.2 by 11.2 km, and Eros is approximately 1.5 AU from the

Sun (roughly the distance of Mars from the Sun). As the spacecraft moves

away from the body, the non-central body gravitational forces drop off much

faster than the central body term, as expected, and the SRP and TBP forces
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overtake the non-central body gravity when the spacecraft is over 300 kilo-

meters away from the body. At a radius of 300 kilometers, the non-central

body, SRP, and TBP forces are all roughly the same order of magnitude. As a

result, it is important to model all of these perturbations in orbits that spend

significant time at 300 kilometers. If the spacecraft is consistently much closer

to the small body, it may be acceptable to neglect SRP and TBP. The same

is true of the gravity perturbations for orbital regimes significantly above 300

kilometers.

Note also that the TBP force starts much smaller than SRP, but grows

to much larger values than SRP with increasing spacecraft distance from the

small body. The increasing TBP magnitude is a consequence of the two vec-

tor terms in equation 1.13 growing apart. When the spacecraft is close to

the small body the direct spacecraft-to-third-body and indirect small-body-

to-third-body terms are very close in magnitude and direction. But as the

spacecraft moves away from the small body the two vectors are increasingly

different, and thus the overall perturbation grows. Additionally, the closer the

spacecraft and small body are to the third body (e.g. planets like Jupiter),

the more the TBP term will dominate.

As the radial position magnitude increases to thousands of times greater

than the small body radii of Eros, eventually even the central body gravita-

tional force is smaller than the TBP and SRP. For smaller bodies than Eros,

the SRP becomes dominant at smaller radius values away from the small body,

as is shown in the “Variations in Small Body Size and Mass” section.
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Note that the bodies included in the computation of the TBP are Venus,

Earth, Mars, Jupiter, Saturn, and the Sun (which is by far the largest pertur-

bation). Venus is the largest perturbing force besides the sun at this example

epoch due to it’s proximity, and the perturbation due to Jupiter is only slightly

smaller in magnitude than the Venus perturbation.

Russell [104] shows for a number of comet and asteroid bodies, the

relative importance of the SRP and TBP at two different locations: the body

radius and Hill radius. The Hill radius is one measure of the body’s sphere

of influence, and is analogous to the L1 and L2 libration point distance in the

restricted third body problem [135]. The overall conclusion is that SRP is of

much greater importance for small bodies orbiting the sun, and TBP are more

important for small bodies orbiting planets, which matches the conclusions

drawn from the plot shown above and the plot shown below in the section

titled “Variations in Small Body Distance to Jupiter”. Though most stable

orbits about small bodies are generally no further than a third to a half the Hill

radius [102], the perturbations are computed well outside of the Hill radius in

this analysis in order to assess the their importance during the initial approach

(and possibly subsequent departure) of the small body.

For small body flyby and impact/intercept missions, these same per-

turbations affect the spacecraft dynamics, but the time frame over which they

act is much shorter. Thus, for most of these kinds of missions, only the central

body gravity term of the small body is relevant (beyond the propulsive forces

used to steer the spacecraft) [52].
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1.2.2.2 Variations in Small Body Distance to Sun

For small bodies closer to the sun, the SRP and TBP from the sun

increases significantly. As seen in equations 1.11 and 1.12, the force from the

SRP increases as (1/r2) as the small body and spacecraft approach the sun.

As seen in equation 1.13, the force from TBP increases even faster than (1/r2).

To illustrate this concept, Figure 1.3 shows the forces on the spacecraft as the

small body distance from the sun is varied from the Mercury orbit of 0.3 AU to

50 AU. The spacecraft is kept at a constant position relative to the small body,

and thus the central body and non-central body gravity forces are constant.
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Figure 1.3: Forces on Spacecraft as Function of Small Body Distance to Sun

The magnitude of the spacecraft position relative to the small body is

approximately 1000 kilometers. This very large distance is chosen so as to

demonstrate a scenario for the Eros small body where the TBP can become

larger than the central body force (in effect formation flying with the small

body). When the spacecraft is closer to the small body, the central body terms
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always dominates (at least for asteroid locations as close as 0.3 AU from the

sun).

From Figure 1.3, it is clear that both SRP and TBP increase rapidly

as the small body moves closer to the sun, and the TBP force increases faster

than then SRP. Correspondingly the TBP also deceases faster than SRP with

increasing distance from the Sun, and thus SRP is the dominant perturbation

in this example from 2.5 to 20 AU.

1.2.2.3 Variations in Small Body Distance to Jupiter

For small bodies closer to one of the planets in the solar system, such

as the minor moons of Jupiter, the third body perturbation from the planet

can dominate the other forces acting on the spacecraft. Figure 1.4 illustrates

this effect, with the distance from the Jupiter center of mass to the small

body center of mass varied from 1.2 Jupiter Radii to 2000 Jupiter Radii. The

spacecraft is kept at a constant position 100 km away from the small body.
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Figure 1.4: Forces on Spacecraft as Function of Small Body Distance to Jupiter
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By far the most variable force in this example is the TBP. When the

small body is less than 10 Jupiter Radii from the center of mass of Jupiter,

the TBP force is larger than the central body force acting on the spacecraft

from the small body. To put this distance into perspective, the moon Europa

has a semi-major axis of 9.6 Jupiter Radii. Fortunately the vast majority of

Jupiter moons that are considered “small bodies” are between 100 and 450

Jupiter Radii from Jupiter, but the TBP continues to be an important force

to model even at these altitudes. At 1000 Jupiter Radii, the TBP plot levels

out and starts to increase once again, as the perturbation from the Sun starts

to become relevant. The SRP force increases very slightly with increasing

distance from Jupiter only because the small body is moving in the direction

of the sun with increasing distance from Jupiter in this example.

1.2.2.4 Variations in Small Body Size and Mass

The size and mass of the small body heavily influence the central body

and gravitational perturbation forces on the spacecraft. For approximately

constant density small bodies, the mass and size of the body are directly pro-

portional, with larger and more massive bodies exerting stronger gravitational

forces on a spacecraft than smaller and less massive bodies. The gravitational

forces associated with a small body with the same proportions of Eros are

computed as the average radius of the small body is varied from 100 meters

to 300 kilometers, with the same density for all radius values (which is used

to compute the mass of the body). The value of 300 kilometers is used as the

upper bound to emulate Vesta, with radius values of 286.3 by 278.6 by 223.2
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kilometers. The spacecraft is placed at a position 1.5 times the body radius

for each value of the body radius shown in Figure 1.5.
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Figure 1.5: Forces on Spacecraft as Function of Small Body Radius

The central body, non-central body, and TBP forces increase exponen-

tially with increasing radius. The SRP is relatively constant at these scales,

and can be the dominate perturbation force when the small body has a radius

below 200 meters. The SRP can also become smaller than the TBP as the

body grows to sizes larger than 300 kilometers in radius, a consequence of the

fact that the spacecraft is kept at 1.5 body radii away from the small body

center of mass (a much larger distance for larger small bodies).

1.2.2.5 Relative Effect of Outgassing on Comets

For missions to comets, an additional perturbation must be considered:

outgassing. Using the model defined above, the perturbation force of an out-

gassing jet placed at the largest radius of the small body is computed for a

29



range of spacecraft altitudes above the jet, as shown in Figure 1.6. The space-

craft’s position is varied from the jet’s exact location to approximately 1000

kilometers above the jet. The minimum and maximum expected surface ejecta

speeds of 0.35 kilometers per second and 0.95 kilometers per second are used

to compute the minimum and maximum force from the jet for the different

spacecraft altitudes.
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Figure 1.6: Forces on Spacecraft as Function of Spacecraft Distance Above Jet

The central body force remains the largest force for this example at all

altitudes. Closer to the jet location on the surface, the non-central gravita-

tional forces remain larger than the jet force, but other forces such as SRP

and TBP are significantly smaller than the jet force.

A number of assumed parameters were used for these computed jet

perturbations, from the jet speed at the surface (0.35 to 0.95 km/s) to the

relative intensity value of the comet at the jet site α used in equation 1.17 (set

to 0.5 for this example). Thus, the jet perturbation could be much smaller
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or larger, but this example shows how it varies with spacecraft distance from

the jet. This example also shows how it is possible to have orbit regimes with

all four primary perturbation forces at the same order of magnitude. Between

200 and 300 km the four different perturbation forces are roughly equivalent

in magnitude.

1.2.3 Small Body Dynamical Environment Conclusions

A variety of forces of very different natures can affect the motion and

thus navigation of spacecraft in the region of small bodies. These forces depend

on a number of factors, including the spacecraft’s distance to the small body,

the small body’s distance to the sun or planetary body, the small body’s size

and mass, as well as the spacecraft’s proximity to outgassing jets on comets.

Because of the number of variables involved, it is wise to investigate all poten-

tial relevant perturbations that can affect the spacecraft for all orbital regimes

a spacecraft mission can assume. This investigation must be done before any

forces are neglected for computational savings in trajectory design or naviga-

tion analysis. In general however, forces such as solar radiation pressure play

a much larger role in missions to small bodies than in missions orbiting larger

celestial bodies such as planets, dwarf planets, and large moons.

1.3 Dissertation Outline and Contributions

Several advances in the field of small body navigation are described in

this dissertation. Each of the main research topics is listed here and addressed

fully in the following chapters. Appendix B lists the accepted and submitted
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journal papers (in addition to conference papers) that are associated with each

of these analyses.

Chapter 2 provides an investigation of the effectiveness of modern or-

bit estimation techniques for small body optical navigation. Two sequential

estimation methods, the Extended Kalman Filter (EKF) and the Additive

Divided-Difference sigma point Filter (ADF) are implemented and compared

in a small body optical navigation scenario. Significant contributions from this

work include:

• An analysis that reveals the initial spacecraft state error and time be-

tween measurements are the key drivers that distinguish the performance

of the EKF versus the ADF. A trade study over different initial space-

craft state error levels and measurement time intervals shows where the

ADF provides superior performance to the EKF, as well as the level of

improvement in navigation robustness and error reduction obtained.

• An analysis showing that the measurement update step of the ADF

provides almost all improvement in the ADF filter over the EKF, as well

as an investigation of how long the interval between measurements must

be before the ADF propagation method provides superior results over

the traditional numerical integration of the state and covariance.

Chapter 3 introduces a novel method using well-established consider

filters such as the Schmidt-Kalman filter to compute a process noise profile

that can be uploaded and used in an onboard spacecraft navigation filter. The
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process noise profile corresponds to a particular reference trajectory, and can

be used by an onboard navigation algorithm such as an EKF. It is expected

that the process noise profiles generated using the consider covariance analysis

will prove particularly useful for missions in which autonomous operations

must occur over short time intervals and in regions where perturbing forces

change significantly over those intervals. One example is a descent trajectory

to the surface of a small body that is far from Earth. Additional contributions

from this research include:

• A method to compute process noise that requires no manual tuning,

or greatly reduces the tuning needed (in cases where small amounts of

traditional process noise must also be added)

• A demonstration of how appropriate levels of process noise are com-

puted for all portions of reference trajectory (accounting for time- and

state-dependent perturbations), providing navigation error and covari-

ance consistency performance on par with the more computationally ex-

pensive consider filter. Linear and non-linear examples are used for this

demonstration, with the non-linear descent scenario of NASA’s OSIRIS-

Rex mission used to show the superiority of the new process method over

the traditional tuned process noise model.

The process of estimating a small body spin state and the landmark

surface locations is one of the most challenging aspects of optical navigation

around small bodies, and currently requires extensive mapping campaigns in

order to get closer to and land on the body via a lengthy iterative process.
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This “boot-strapping” process of first mapping, and then using those maps

to navigate closer and make more detailed maps, has proven critical from

previous missions to small bodies Eros, Itokawa, Vesta, Ceres, and Comet

67P/Churyumov-Gerasimenko. The upcoming NASA mission OSIRIS-REx

will spend over 8 months mapping the surface before landing on the body [16].

Chapters 4 and 5 explore the use of Simultaneous Localization and

Mapping (SLAM) techniques [49, 124, 131] for the initial spin state estimation

of previously unvisited small bodies when first arriving at the small body, par-

ticularly for scenarios in which the small body is tumbling (i.e in significantly

non-principal axes rotation). Initializing the spin state estimate of a tumbling

small body is significantly more challenging, and most navigation tools are not

designed to handle such a scenario. In addition to better handling the spin

state estimation of a tumbling body, SLAM may enable spacecraft to approach

the small body surface much faster, which can reduce risk in scenarios where

poorly understood and unpredictable forces such as comet outgassing can oc-

cur (e.g. the Rosetta mission at Comet 67P/Churyumov-Gerasimenko [59]).

SLAM may also allow significantly less ground operations and processing.

In Chapter 4, the SLAM tools are implemented and the Rosetta comet

characterization phase is simulated to perform various trade studies and ex-

plore the limits of the SLAM algorithm capabilities. Contributions from Chap-

ter 4 include:

• A analysis of the SLAM algorithm performance for different levels of

body tumbling (and in particular the range of tumbling expected in
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small bodies throughout the solar system), revealing that the SLAM

algorithm can still converge on the correct spin state with large levels of

initial angular velocity error (i.e. effectively no prior knowledge of the

angular velocity). Similar analysis is performed showing the effective

estimation of the spin state parameters and the landmark positions well

beyond the largest expected initial landmark position errors, as well as

for larger optical landmark measurement errors.

• Extensive observability analyses, with the Stripped Observability Matrix

and the Singular Value Decomposition used to determine the states asso-

ciated with each eigenvalue (providing a measure of the relative observ-

ability of the different states). Additional observability analysis considers

how a shift in the landmark positions on the surface can be separated

from an equal and opposite shift in the rotation of the body, with the

conclusion that some level of non-sphericity and tumbling is necessary

to fully separate these errors.

In Chapter 5, the developed SLAM tools are employed to estimate the

spin state of an independently simulated small body created by ESA. High

fidelity imagery of the tumbling small body is provided, from which land-

marks are identified and the spin state is successfully estimated. Additional

contributions from Chapter 5 include:

• A new method for obtaining initial small body landmark locations, using

the first observations of those landmarks and a triaxial ellipsoid approx-
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imately aligned with the minimum, medium, and maximum radii of the

body

• A filtering and smoothing iteration scheme that provides smoothed state

estimates of the spacecraft position and velocity; small body orientation

and angular velocity (i.e. it’s spin state); small body inertia tensor;

landmark body-fixed surface positions; and via an indirect method the

impulsive maneuver delta-v vectors

Chapter 6 provides a summary of the research objectives and accom-

plishments, as well as potentially valuable future research ideas. Applications

of the research to future missions to small bodies, as well other types of space-

craft missions and other fields that involve navigation, are emphasized.

Appendix A explains how to represent an attitude using Modified Ro-

drigues Parameters (MRP), and provides the dynamical model for this repre-

sentation. The shadow set switching method for easily avoiding singularities is

also provided, as well as the advantages of using MRP to represent the small

body orientation in a small body spin state estimation scenario.
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Chapter 2

Small Body Optical Navigation Using The
Additive Divided Difference Sigma Point

Filter

In this chapter1, sequential estimation methods are evaluated for small

body autonomous navigation using optical landmark measurements. Sequen-

tial techniques are employed due to the inherently sequential nature of real-

time navigation and the limited computational resources of onboard proces-

sors. All spacecraft state parameters (position, velocity, and attitude) are

directly estimated from the optical landmark measurements to minimize mea-

surement information loss. The standard Extended Kalman Filter (EKF) and

the Additive Divided-difference sigma point Filter (ADF) are compared us-

ing Monte Carlo analyses in various mission scenarios. The ADF performs

favorably versus the EKF, especially for greater initial state errors and longer

intervals between measurements. Planners and operators for current and fu-

ture missions that plan to use landmark optical navigation about small bodies

1The work in this chapter has been published as a journal paper:

• Olson, C., Russell, R., Carpenter, J.R., “Small Body Optical Navigation Using The
Additive Divided Difference Sigma Point Filter,” AIAA Journal of Guidance, Control
and Dynamics, Vol. 39, No. 4, April 2016, pp. 922-928.

The analysis was performed primarily by the first author, with general development guidance
and management provided by the co-authors.
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could benefit from the sequential single-filter architecture and the tuning pa-

rameters used in this analysis.

2.1 Introduction

In previous studies performed by Bhaskaran, et al. [19] and the author

[90], a two-level nested Batch Least Squares (BLS) approach was used to

evaluate the feasibility of autonomous optical navigation about small bodies.

However, this nesting approach can result in measurement information loss,

and the limited computational resources of onboard processors lend better

to sequential methods. Therein lies the main motivation and objectives of

this chapter: Extend the results of previous studies to evaluate sequential

estimation techniques in a single filter architecture, and compare the EKF to

the higher order Additive Divided difference sigma point Filter (ADF) [74].

Other researchers have investigated sigma point filters such as the Un-

scented Kalman Filter (UKF) for planetary Entry, Descent and Landing, [42],

but not for optical navigation around small bodies. The Rao-Blackwellized

Particle Filter has been considered for small body landings with optical nav-

igation [35, 36], but sigma point filters are more likely to be feasible with

onboard computation constraints.

Both the EKF and ADF are employed to estimate the inertial position,

velocity, and attitude of the spacecraft directly from the surface landmark

optical measurements, using the attitude from an independent attitude deter-

mination system consisting of gyroscopes, star cameras, and an attitude deter-
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mination filter as the a priori state. Modified Rodrigues Parameters (MRP)

[38] are used to represent the spacecraft’s attitude (see Appendix A). Monte

Carlo analyses are employed to statistically evaluate each filter’s performance,

assess covariance realism, and compare the different techniques.

The ADF is chosen for evaluation over other modern sigma point filters

such as the Unscented Kalman Filter (UKF) because it requires only one

additional tuning parameter, versus three for the standard UKF formulation.

The ADF is also in a square root form by default, enhancing numerical stability

and ensuring the positive definiteness of the covariance matrix [74] (though

the UKF can also be implemented in square root form [128]).

2.2 Optical Navigation Using Landmarks
2.2.1 Landmark Measurements

The navigation algorithms detailed in this chapter use optical landmark

measurements, with an observation model as described in section 1.1. The

simulated camera is comparable to the Charge-Coupled Device (CCD) cameras

used for navigation in previous small body missions. Specifically, the Rosetta

mission navigation camera parameters are used, with a focal length of 140

mm, a sensor array of 1024 by 1024 pixels, and a total field-of-view (FOV)

of approximately 5 degrees [67]. The results of this chapter are generally

applicable to any CCD with a similar focal length, pixel array size, and FOV

(which includes all recent small body missions).
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The landmark measurement error used in the simulations is based on

measurement errors expected from the surface maplet stereophotoclinometry

method, as described in Gaskell [44], which have numerous advantages over

the use of natural surface features such as craters. It is assumed that the

small body orientation, rotational velocity, shape model, gravity field, and

a set of surface landmarks has been previously determined. The estimation

of these items, along with landmark identification, are challenging topics of

their own [114, 33, 95], and are considered in Chapters 4 and 5. A triaxial

ellipsoid is used instead of a polyhedron shape model, which is sufficient for the

evaluation of the navigation algorithms. Night shading has been implemented

in the analysis, which greatly reduces the number of visible landmarks when

the spacecraft is on the far side of the small body from the sun. Camera

distortion effects on the images that are typically calibrated in flight are not

included in the simulations.

2.2.2 Estimation Filter Architecture

It is well known that estimation processes benefit from using measure-

ments in their most raw state possible (e.g. smoothing of measurements can

lead to information loss). Thus, if possible, the raw landmark measurements

are preferred, as in a tightly coupled inertial navigation system that uses GPS

pseudorange measurements rather than GPS position fixes [132]. In this chap-

ter, the spacecraft position, velocity, and attitude corrections are simultane-

ously estimated directly from the landmark observations, with an initially es-

timated attitude and covariance provided by an independent onboard attitude
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determination system used as the apriori attitude state and covariance. It is as-

sumed that the spacecraft is commanded to point the navigation camera at the

center of mass of the small body using onboard position and attitude knowl-

edge at every picture time using control moment gyroscopes (CMG), reaction

wheels, or thrusters. Assuming that the attitude control error is low enough

that a sufficient number of landmarks are in the camera field of view, the more

important aspect for navigation analysis is the attitude knowledge error. The

initial attitude knowledge error is simulated using expected attitude knowledge

accuracy from modern onboard attitude determination systems [71, 76, 1].

While some filter nesting still occurs by using the independently esti-

mated attitude from an onboard attitude determination system, the overall

structure now consists of two filters rather than three. And by using the es-

timated attitude from the onboard attitude determination system in the form

of an expected error on the truth attitude, given historical performance from

previous missions, there is no need to dynamically propagate the spacecraft at-

titude between picture times. This approach also obviates the need to directly

compute and incorporate attitude maneuvers, which significantly simplifies

the simulation and is based on previous published work [19]. High accuracy

attitude determination system estimates are very likely to be available on any

future missions to small bodies, and thus the errors associated with these es-

timates are representative of what can be expected in future missions to small

bodies.

A standard discrete additive Extended Kalman Filter, as described by

Tapley, et. al. [121], is employed. Representing the spacecraft attitude as an
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MRP vector is ideal for combined spacecraft position, velocity, and attitude

estimation, as described in Appendix A.

2.2.2.1 Additive Divided difference sigma point Filter (ADF)

The ADF is a sigma point filter that uses second-order numerical differ-

encing equations to approximate nonlinear dynamical and measurement mod-

els [88, 89]. The formulation used in this chapter is a hybrid of the forms

presented by Lee and Alfriend [74] and Carpenter et. al. [25], in discrete

form.

The Divided Difference Sigma Point Transformation (DDT) is the heart

of the ADF, and is what makes the ADF unique from other sigma point fil-

ters. A brief description of the ADF starts with the DDT, used for both the

nonlinear state propagation and measurement functions. In linearized filters

it is common to approximate a nonlinear function f(x) with a Taylor series

truncation, such as

f(x) ≈ f(x̂) + f ′(x)(x− x̂) (2.1)

where f ′(x) is an exact gradient. By contrast, the divided difference trans-

formation uses a second-order truncation along with numerical differencing

formulas for the derivatives:

f(x) ≈ f(x̂) + D̃
(1)
∆xf(x̂) + D̃

(2)
∆xf(x̂) (2.2)

where the divided difference operators D̃(i)
∆xf(x̂) approximate the coefficients

of the multidimensional Taylor series expansion using Stirling interpolations
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[89, 88]. These interpolators difference perturbations of f(x̂) across an in-

terval, h, over a spanning basis set of sigma points, which are formed (i.e.

spawned) from the columns of the Cholesky decomposition of the covariance

of the domain vector, x. The sigma points are computed using the mean x̂

and its corresponding covariance, Px, as

X = [x̂, x̂+ h
c
√
P x(:, 1), x̂+ h

c
√
P x(:, 2), ...,

x̂− h c
√
P x(:, 1), x̂− h c

√
P x(:, 2), ...

] (2.3)

where the subscript (:, i) denotes column i of the corresponding array, and

P = c
√
P c
√
P
T denotes a Cholesky factorization. Let sigma points in the range

of the function be given by

Y = f(X) (2.4)

These range sigma points may be merged to form the mean of the range of

the function using

ŷ = µh(Y) = h2 − n
h2 Y(:,1) + 1

2h2

2n+1∑
i=2

Y(:,i) (2.5)

To form an associated covariance, the following divided-differences are next

computed:

D̃
(1)
∆xf(x̂)(:,i) = 1

2h
[
Y(:,i+1) − Y(:,i+1+n)

]
D̃

(2)
∆xf(x̂)(:,i) =

√
h2 − 1
2h2

[
Y(:,i+1) + Y(:,i+1+n) − 2Y(:,1)

] (2.6)

The covariance is then computed from

Py =
[
D̃

(1)
∆xf(x̂), D̃(2)

∆xf(x̂)
] [
D̃

(1)
∆xf(x̂), D̃(2)

∆xf(x̂)
]T

(2.7)
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The DDT is applied to the nonlinear dynamics function to compute the

propagated mean state and covariance, as well as to the nonlinear measure-

ment function to compute the expected measurement and associated innova-

tion covariance matrix. We employ the standard approach of using augmented

state and covariance matrices for these transformations to incorporate tradi-

tional process and measurement noise [93, 74]. For the state and covariance

propagation, the spawned sigma points are

Xxw
1,k = Xxw

k =
[
X+

k

w̄k

]
=
[
X+

k

0nw×1

]
nxw×1

Xxw
i,k = Xxw

k + h

[
C

√
P+
k 0

0 C
√
Qk

]
(:,i−1)

, i = 2, ..., nxw + 1

Xxw
i,k = Xxw

k − h
[

C

√
P+
k 0

0 C
√
Qk

]
(:,i−1−nxw)

, i = nxw + 2, ..., 2nxw + 1

(2.8)

where X+
k is the post-fit state estimate at the previous time tk, w̄k is the

mean process noise, C

√
P+
k is the Cholesky decomposition of the post-fit state

covariance at the previous time, C
√
Qk is the Cholesky decomposition of the

process noise matrix, nxw is the length of the augmented state vector for the

state and covariance propagation, and h is the ADF tuning parameter. These

sigma points are propagated using the state propagation function, with the

process noise added:

Xx
i,k+1|k = f(Xi,k(1 : nx)) + Xi,k(nx + 1 : nxw) (2.9)

where nx is the length of the non-augmented state vector, and the predicted

state vector is computed using these propagated sigma points:

X−k+1 = h2 − nxw
h2 Xx

1,k+1|k + 1
2h2

2nxw+1∑
i=2

Xx
i,k+1|k (2.10)
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The forward and central numerical difference terms are computed as

S
(1)
x,k+1(:,i−1)

= 1
2h

[
Xx
i,k+1|k − Xx

i+nxw,k+1|k

]
, i = 2, ..., nxw + 1

S
(2)
x,k+1(:,i−1)

=
√
h2 − 1
2h2

[
Xx
i,k+1|k + Xx

i+nxw,k+1|k − 2Xx
1,k+1|k

]
, i = 2, ..., nxw + 1

(2.11)

and the resulting mapped state covariance is

P−k+1 =
[
S

(1)
x,k+1 S

(2)
x,k+1

] [
S

(1)
x,k+1 S

(2)
x,k+1

]T
(2.12)

The DDT is similarly applied to the nonlinear measurement function to pro-

duce the expected measurement Ȳk+1 and the associated innovation covariance

matrix P vv
k+1, using the measurement uncertainty matrix Rk+1 and assuming

that the measurement noise is directly added to the output of the measurement

function to obtain the output sigma points Zi,k+1. As part of this transforma-

tion, the forward and central difference terms are defined as

S
(1)
v,k+1(:,i−1)

= 1
2h [Zi,k+1 − Zi+nxv ,k+1] , i = 2, ..., nxv + 1

S
(2)
v,k+1(:,i−1)

=
√
h2 − 1
2h2 [Zi,k+1 + Zi+nxv ,k+1 − 2Z1,k+1] , i = 2, ..., nxv + 1

(2.13)

where nxv is the length of the augmented state vector for the measurement

function transformation (i.e. the number of states plus the number of mea-

surement values). Note that the tuning parameter h, typically set to the value

of
√

3, can be different in the measurement function DDT than in the propa-

gation function DDT.

The cross-correlation matrix is computed using the Cholesky decom-

position of the mapped state covariance and the forward difference term from
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the measurement function DDT:

P xy
k+1 = C

√
P−k+1

[
S

(1)
v,k+1(:,1:nx)

]T
(2.14)

The filter gain matrix is generated using the same quantities as in the EKF

(also provided in equation 3.16),

Kk+1 = P xy
k+1

[
P vv
k+1

]−1
(2.15)

and the state vector estimate is computed using the residuals vector νk+1 as

in the EKF:

X+
k+1 = X−k+1 +Kk+1νk+1 (2.16)

The updated covariance can be computed via either the traditional formulation

P+
k+1 = P−k+1 −Kk+1P

vv
k+1K

T
k+1, (2.17)

or through the direct use of the difference values as

P+
k+1 =

[
C

√
P−k+1 −Kk+1S

vv
k+1,x Kk+1S

vv
k+1,xv

]
·[

C

√
P−k+1 −Kk+1S

vv
k+1,x Kk+1S

vv
k+1,xv

]T (2.18)

where

Svvk+1,x = S
(1)
v,k+1(:,1:nx)

Svvk+1,xv =
[
S

(1)
v,k+1(:,nx+1)

, ..., S
(1)
v,k+1(:,nxv)

, S
(2)
v,k+1(:,1:nxv)

] (2.19)

2.2.3 Dynamical Trajectory Model

The spacecraft position and velocity are propagated via numerical in-

tegration between picture times using variable step RK7(8) propagation, with
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relative and absolute error tolerances set to 10-13. The covariance is propa-

gated to the same times, also using variable step propagation, by the standard

method of integrating the state transition matrix via numerical integration.

The simulation includes central body acceleration and perturbations from a

spherical harmonic gravity field, for both the truth and filter dynamics. Stan-

dard perturbation accelerations from third body perturbations (TBP) and

solar radiation pressure (SRP) are included for completeness in both the truth

and filter dynamics, but these perturbations do not significantly affect the re-

sults and conclusions of the analysis (for the class of small bodies and orbits

considered).

A 16 by 16 degree and order Eros spherical harmonic gravity model is

used for the truth model, which is the highest degree and order field publicly

available for Eros. The terms associated with the lower order 4 by 4 field are

perturbed for each Monte Carlo trial using the uncertainties provided as part

of the published Eros gravity field coefficients, and these values are used in

the nominal model.

2.3 Simulation Scenario

Simulations are performed to assess the performance of the EKF and

ADF filters. Various timing parameters of the simulations are listed in Table

2.1.

The mission scenario is a 50 kilometer radius orbit about a small body

similar to the asteroid Eros, which is modeled as a triaxial ellipsoid with the
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Table 2.1: Simulation Timing
Simulation Parameter Nominal Values

Epoch Time 24-Nov-2017 09:55:00.00
End Time 28-Nov-2017 23:55:00.00

Minimum Time After Epoch Before
First Update 1 hour

Minimum Time Before End Time For
Last Update 0 hours

Time Between Measurements 3 hours

same major, intermediate, and minor axes dimensions as Eros. The initial

position and velocity correspond to a circular orbit, which rapidly becomes

non-circular due to gravity perturbations. See Tables 2.2 and 2.3 for the

detailed parameters for Eros and the spacecraft, respectively.

There are 2000 predetermined and randomly located landmarks avail-

able for navigation, which are presumed to be a result of previous mapping

campaigns. This number of landmarks is chosen in order to ensure that the

spacecraft can observe a reasonable number of landmarks during the simu-

lation, with a narrow field of view (5 degrees) limiting the amount of small

body surface visible to the spacecraft. In past missions there have been on the

order of thousands of landmarks available by this the time the spacecraft is

orbiting this close to the small body [80]. Thus 2000 landmarks is a reasonable

minimum number of available landmarks.

A non-terminator orbit is chosen to examine how the filters handle sig-

nificant variation in the number of visible landmarks, and the orbit is low

enough to possess significant non-linear motion due to the gravity terms of

the body. The orbit is also chosen such that it remains outside the Brillouin
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Table 2.2: Small Body Properties
Simulation Parameter Nominal Values

Initial Pole Right Ascension, Declination 30, 40 deg
Pole Right Ascension, Declination Rates 2, 3 deg/Julian century

Longitude of the Prime Meridian at Epoch 50 deg
Rotation Rate 1639.389232 deg/day

GM 4.4627547x10-4 km3/s2

Radius Values 17.2 × 5.6 × 5.6 km
Number of Landmarks on surface 2000

Truth Gravity Harmonics 16 x 16 (Eros)
Nominal Gravity Harmonics 4 x 4 (Eros, Perturbed)

Table 2.3: Spacecraft Properties
Simulation Parameter Nominal Values
Spacecraft Initial Position [50, 0, 0] km
Spacecraft Initial Velocity [0, 2.987559x10-3, 0] km/s

Mass 1422 kg
Area 6 m2

sphere of the body, so that spherical harmonics can be used for gravity per-

turbations. Figure 2.1 shows the truth inertial and body-fixed trajectories for

this particular scenario.

2.3.1 Filter Parameters

The two filters use the same initial state uncertainty, but the value of

the filter process noise is selected for each filter such that the resulting 3-sigma

formal covariance is consistent with the error distribution of a Monte Carlo

analysis for the nominal scenario described above. By choosing the process

noise values differently for each filter based on this criteria, the optimum per-

formance of each filter is compared. These parameters are listed in Table 2.4.
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Figure 2.1: Truth Trajectory

Note that the measurement noise covariance sigmas are higher in this nominal

scenario than one might expect given the measurement error of 9 arc seconds

(approximately equal to 0.5 pixel for the simulated camera) (1-sigma) shown in

the next section. Setting these sigma values higher than the expected measure-

ment error is known as measurement underweighting, which often produces the

lowest navigation errors [145, 12]. Because the nominal attitude is obtained

from a separate onboard attitude determination process at each photo time,

and not dynamically propagated as explained previously, the a priori attitude

covariance is the same for every photo. Thus no process noise is necessary

for the attitude estimate. Note that nominally the spacecraft attitude is not

estimated by setting the a priori attitude covariance to zero.

2.3.2 Monte Carlo Error Parameters

Monte Carlo simulations are used to obtain a realistic assessment of the

filter predicted covariance. The 1-σ simulation error parameters sampled in the
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Table 2.4: Filter Parameters
Simulation Parameter Nominal Values

Initial Filter Position Covariance (1-σ) [0.064, 0.048, 0.016] km
Initial Filter Velocity Covariance (1-σ) [8x10-5, 8x10-5, 8x10-5] km/s
Initial Filter Attitude Covariance (1-σ) [0.0, 0.0, 0.0] deg
Measurement Noise Covariance (1-σ) [44, 44] arcsec ([2.5, 2.5] pixels)

Process Noise q for Position and
Velocity, EKF 1x10-13 km2/s3

Process Noise q for Position and
Velocity, ADF 5x10-15 km2/s3

ADF Tuning Parameter, Propagation h2 1.5
ADF Tuning Parameter, Update h2 1.5

Monte Carlo simulations are listed in Table 2.5. Note that only the spacecraft

parameters and the small body gravity field 4x4 coefficients are perturbed, with

the small body parameters such as the pole direction and rotation rate kept

fixed. The process noise included in the filters is used to account for these error

sources and the growth in error during periods of no measurement that result

from the error introduced previously. Modern image processing capabilities

can generate landmark center values at sub-pixel precision, and thus 0.5 pixel

errors (equivalent to 9 arc seconds angular error for this camera) are used in

this simulation. The expected state errors from optical navigation in earlier

mission phases are used for the initial state errors [1].

Because the intent of this chapter is to assess the relative performance

of the EKF versus the ADF, the initial state errors are used to distribute

the initial nominal states about the truth. Similarly, the nominal attitude

at each picture time is computed by “adding” (in the rotational sense) the
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Table 2.5: 1-σ Monte Carlo Error Parameters
Simulation Parameter 1-σ Values
Spacecraft Initial Position [0.064, 0.048, 0.016] km
Spacecraft Initial Velocity [8x10-5,8x10-5,8x10-5] km/s

Attitude [0.04, 0.04, 0.04] deg
Observation [9, 9] arcsec ([0.5, 0.5] pixels)

Spacecraft Mass 20 kg
Spacecraft Area 1 m2

Small Body 4x4 Published Eros
Gravity Coefficients Coefficient Uncertainties

computed attitude error to the truth pointing vector. As a result, there is a

single truth trajectory and set of observations for all Monte Carlo trials. In an

actual mission, only the estimated nominal state is known, and thus the initial

state deviations based on the state uncertainty are used to distribute many

different potential truth trajectories about the nominal reference trajectory.

This approach is more appropriate when assessing the general performance of

the filter, versus comparing the performance of the filters.

2.4 Simulation Results

In the nominal scenario, Monte Carlo analysis using 1000 trials is em-

ployed. The number of Monte Carlo trials was increased by an order of magni-

tude until the ensemble error statistics converged. Figure 2.2 shows the number

of landmarks visible at each picture time for all Monte Carlo trials. The num-

ber of visible landmarks strongly correlates to the level of error observed in

the simulations, as seen in Figure 2.3, which shows the error and covariance

using the EKF and ADF. The attitude correction from the optical landmark
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observations is very small, and does not significantly affect the performance

of the filters. Attitude errors at least an order of magnitude larger than the

conservative expected 0.04 degree (1-σ) error are necessary before the atti-

tude correction significantly affects the estimation performance, which might

occur if the independent attitude system estimates are degraded. Diverged

runs, defined as those runs exceeding 0.5 kilometers of position error at the

final simulation time, are not included in the plots. This divergence criteria is

chosen based on the observed set of trial results of this particular problem. A

more general divergence criteria is one that declares a trial diverged when the

small body is no longer present in any subsequent images. The employment

of this alternative divergence criteria is saved for future work. The RMS and

Max statistics in the captions correspond to the shared non-diverged runs for

both the EKF and ADF.
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Figure 2.2: Landmark Visibility, 1000 Runs for the EKF, Nominal Scenario

While the EKF has 58 diverged trials over 1000 Monte Carlo runs,

the ADF has zero, a significant improvement. These divergent runs are a
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(c) Vel RMS: 1.137E-4, Max: 1.165E-3
km/s
EKF, 58 diverged trials
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(d) Vel RMS: 8.874E-5, Max: 8.030E-4
km/s
ADF, 0 diverged trials

Figure 2.3: 1000 Monte Carlo Sim, RSS Error, 3x Root-Variance, Nominal
Scenario

result of the EKF breaking down when landmark measurements are received

following a time interval with no measurements (i.e. when the spacecraft is

on the dark side of the body). Comparing the performance of the shared

non-diverged trials in the ADF to the EKF, it is seen that the ADF better

estimates the spacecraft position and velocity than the EKF, with error RMS
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values approximately 19% (position) and 22% (velocity) lower than the EKF.

The cyclic behavior of the performance is due to the periodic nature in the

number of visible landmarks (see Figure 2.2), which in turn is a result of

the lighting conditions on the small body. While the process noise values

for the ADF and EKF are chosen to best represent the error distribution in

the formal 3-sigma uncertainty, the ADF still outperforms the EKF when the

process noise is set to the same value (for either process noise value).

The two parameters which most strongly affect the relative performance

of the EKF versus the ADF are the initial state error and the time between

observations. Thus, these two quantities are deterministically varied as de-

scribed in Table 2.6 for the initial state error, and from 30 minutes to 5 hours

(2% to 17% of the orbit period) for the observation interval, for a total of

100 nodes that are evaluated using Monte Carlo analysis of 100 nominal tri-

als each. The number of trials is reduced from 1000 to 100, due to the large

number of nodes evaluated. The results for each of the 100 resulting nodes are

shown in Figure 2.4 below, where the EKF error RMS and number of diverged

runs are subtracted from the ADF values (thus negative values show the ADF

improvement).

The ADF has the same or fewer diverged trials than the EKF at every

node, providing significant improvement in robustness over the EKF. A total

of 224 fewer diverged trials take place over all 100 nodes. Among those shared

non-diverged trials for each node, the position and velocity RMS values are

consistently lower for the ADF than the EKF. Note that the performance

difference between the ADF and EKF becomes greater with higher initial
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Table 2.6: Trade Study Parameters
Simulation Parameter Values
Initial Position Error (x) [0.008 : 0.008 : 0.08] km 1-σ
Initial Position Error (y) [0.006 : 0.006 : 0.06] km 1-σ
Initial Position Error (z) [0.002 : 0.002 : 0.02] km 1-σ

Initial Velocity Error (all) [1x10-5:1x10-5:1x10-4] km/s 1-σ
Observation Interval [0.5 : 0.5 : 5] hours
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Figure 2.4: 100 Node Trade Study, 100 Nominal Monte Carlo Trials Each
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state error and longer time intervals between photos. The nominal scenario

with results given in Figure 2.3 corresponds to the Initial Error index 8 and

observation interval of 10800 seconds node.

The improvements in performance seen in the scenarios when using

the ADF are provided almost entirely by the measurement update portion of

the filter. In other words, using the DDT for propagation of the spacecraft

estimated state and covariance (versus the standard method of numerically

propagating the previous post-fit state estimate) does not significantly affect

the ADF filter performance for even the largest observation interval times

considered above. To see significant enhancement in the results using the

DDT for propagation of the state and covariance, the maximum initial error

of the trade above is used and the observation interval is increased to ten hours

(double the highest previous value, now at 34% of the orbit period). The ADF

with and without the DDT for propagation are employed in 1000 trial Monte

Carlo simulations, and the results are shown in Figure 2.5 below. The number

of diverged trials is significantly lower with the full ADF employed: 53 instead

of 110 out of 1000 trials, a 52% reduction. The RMS and max error statistics

provided in the captions are for the shared non-diverged trials.

It is not the intent of this chapter to provide detailed timing compar-

isons between the methods, but some approximate timing values can give the

reader a sense of the relative performance of each filter. All code is writ-

ten in Fortran, using the latest 1995 and 2003 standards, and compiled using

standard release mode settings in 2011 Intel Visual Fortran. All simulations

are run on a single processor of a quad-core Intel Xeon CPU running at 3.60
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(a) Pos RMS: 0.8144, Max: 5.6474 km
ADF, Standard Prop, 110 diverged trials
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(b) Pos RMS: 0.5931, Max: 7.8426 km
Full ADF, 53 diverged trials
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(c) Vel RMS: 7.583E-5, Max: 4.014E-4
km/s
ADF, Standard Prop, 110 diverged trials
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(d) Vel RMS: 6.767E-5, Max: 5.577E-4
km/s
Full ADF, 53 diverged trials

Figure 2.5: 1000 Monte Carlo Sim, RSS Error, 3x Root-Variance, Longer
Observation Intervals

GHz. For the full trade study with 100 nodes of 100 nominal Monte Carlo

trials each, the EKF takes approximately 61 minutes to run. The ADF with

standard propagation (only the measurement update uses the DDT) takes ap-

proximately 84 minutes, and the full ADF takes approximately 114 minutes.

The ADF with standard propagation requires only 38% greater computational
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effort than the EKF, while providing significant navigation improvement. The

full ADF requires approximately 36% computational effort than the ADF with

standard propagation, but improvements in performance are only seen for the

largest observation intervals. Computational effort for all the filter options

remains reasonable for onboard navigation.

From additional analysis, it is observed that EKF and ADF degrade

at approximately the same rate when the measurement noise is increased,

the measurement filter noise is reduced, the attitude error is increased, and

unmodeled accelerations (i.e. truth process noise) are added. Both filters

handle biases in the measurements remarkably well, until the biases are so

large that landmarks no longer remain in the field of view.

2.5 Conclusions

In this chapter, the work previously done for small body autonomous

optical navigation is extended by evaluating sequential methods of state es-

timation with optical landmark measurements. The standard EKF and the

ADF are used to estimate the inertial spacecraft position, velocity, and atti-

tude corrections directly from the pixel and line optical measurements, with

Monte Carlo analyses to compare the different techniques.

The ADF performs consistently better than the EKF in the simula-

tions performed, with increasing improvement for higher levels of initial state

error and longer intervals between photos of the surface. The computational

costs are slightly higher for the ADF versus the EKF, but still well within
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computational limitations of onboard systems, especially if only the measure-

ment update portion of the ADF is employed (which also provides most of the

performance enhancement). Realistic heritage values from previous missions

to small bodies are used wherever possible in the simulations, so the estima-

tion architecture and tuning parameters provided may prove useful to future

mission planners and operators.

It is expected that a higher order filter such as the ADF will perform

better than the EKF, based on the stronger incorporation within the filter of

the known nonlinearities in the dynamics and measurement models. However,

the goal of this work is show how much improvement can be obtained, and the

conditions that lead to those improvements. This work also indicates that the

measurement update portion of the ADF provides most of the improvement in

this small body optical navigation scenario, which provides a method to im-

proved performance with lower additional computational cost than employing

the full ADF. In other scenarios, and in particular those with larger accelera-

tions in the dynamics, this ratio of performance provided by the measurement

update versus the propagation step of the ADF may change.
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Chapter 3

Precomputing Process Noise for Onboard
Sequential Filters

Process noise is often used in estimation filters to account for unmodeled

and mismodeled accelerations in the dynamics. The process noise acts to

inflate the covariance over propagation intervals, increasing the uncertainty

in the state. In scenarios where the acceleration errors change significantly

over time, the standard process noise approach can fail to provide effective

representation of the state and its uncertainty. Consider covariance analysis

techniques provide a method to precompute a process noise profile along a

reference trajectory, using known model parameter uncertainties. The process

noise profile allows significantly improved state estimation and uncertainty

representation. The new formulation also eliminates the trial-and-error tuning

currently required of navigation analysts. As a result, estimation performance

on par with the consider filter is achieved without the additional computational

cost of the consider filter. A linear estimation problem as described in several

previous consider covariance analysis publications is used to demonstrate the

effectiveness of the precomputed process noise, as well as a nonlinear descent

scenario at the asteroid Bennu with optical navigation.
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3.1 Introduction

In almost all statistical estimation problems that involve dynamical

systems, there are mismodeled or unmodeled forces that act to cause errors in

the expected state of the system. Thus measurements are needed to correct

the state, and a formal covariance is also computed to provide a measure of

the uncertainty of that estimate. Between measurements, both the estimated

state and the covariance are propagated, and the covariance is also inflated to

account for the increase in uncertainty introduced by the mismodeled and un-

modeled forces. This inflation is commonly labeled as “process noise” (though

the term is also used to describe the errors added to the truth trajectory

propagation for simulation analysis).

The standard approach for determining the appropriate amount of pro-

cess noise is often a lengthy trial-and-error procedure that attempts to match

the formal covariance to the distribution of errors generated by a Monte Carlo

simulation. This process noise is typically modeled as an uncorrelated sequence

of Brownian increments, which may enter the deterministic plant directly, or

via shaping filters that impose a correlation structure. In other words, the

stochastic differential equation can become correlated from the homogeneous

portion, but the forcing function is uncorrelated in time and thus the process

as a whole is Markov (i.e. the future evolution depends only on the current

state). However, there are many scenarios where the magnitude of known un-

modeled or mismodeled perturbations can change significantly over the course

of a reference trajectory, which can make tuning the standard process noise
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challenging. If the perturbation magnitude increase is significant enough, the

standard process noise model may lead to a divergent filter.

An example where significant state-dependent perturbation magnitudes

occur is a spacecraft descent scenario to the surface of a newly explored celes-

tial small body such as an asteroid or comet. Onboard spacecraft navigation

systems often use truncated spherical harmonic gravity models of the bodies

they orbit in order to reduce computational requirements for propagation of

the spacecraft position and velocity state about the body. Additionally, higher

order gravity terms may not be observable in the higher orbits before a de-

scent maneuver. These higher order gravity terms, along with errors in the

estimated lower order gravity terms, can introduce significant errors in the

trajectory as the spacecraft descends to the surface. These errors can lead

to degraded filter performance and strongly affect the spacecraft’s ability to

land accurately and locate landmarks for optical navigation. More generally,

Wright [141] has shown that the errors resulting from using imperfect spheri-

cal harmonic gravity coefficients and a truncated gravity model are correlated

in time. For these autocorrelated noise processes, the standard process noise

approach can fail to provide effective representation of the state uncertainty as

well as effective estimation of the state. Thus a better method for computing

process noise is needed.

The method derived in this chapter computes the process noise for each

interval between measurements of a reference trajectory by mapping model

uncertainty into state uncertainty, as is done in Consider Covariance Analysis

(CCA) and consider filters such as the Schmidt-Kalman Filter (SKF) [115].
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CCA is covered extensively by Tapley [121] for the linearized method, and

Lisano [77] using sigma point transforms. However, in CCA the consider

covariance is computed independently and does not affect the performance of

the underlying filter.

In the SKF, first introduced by Schmidt in 1966 [115, 140], the uncer-

tainties in the model parameters do affect the estimation of the state variables,

and can provide significant improvement to the state estimation without sep-

arate process noise added. As a result, process noise tuning is only necessary

for unmodeled perturbations that are not related to the consider parameters,

and any state-dependent perturbations are properly included. However, with

the additional considered parameters the SKF becomes more computationally

demanding than the standard Kalman Filter (KF), and may prove computa-

tionally intractable for onboard systems. The additional computational burden

can be partially mitigated by avoiding unnecessary calculations associated with

consider states that are structurally uncorrelated from the vehicle dynamics,

such as measurement biases. However, such an approach does not apply when

the consider covariance terms directly relate to the vehicle dynamics, such as

the gravity spherical harmonic coefficients. The difference between the SKF

and KF becomes more pronounced as the number of considered parameters in-

creases, particularly when considering many model parameters (e.g. a gravity

field with thousands of terms). Thus when considering highly limited compu-

tational systems such as those onboard a spacecraft, the question arises: is it

possible to obtain most or all of the benefits of the SKF without the higher

computational costs?
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The answer to this question is in fact yes, though some trade-offs must

occur: the process noise must be precomputed along a reference trajectory,

which must be available and reasonably approximate the true trajectory, and

the precomputed process noise must be stored onboard in the form of a table

or interpolation coefficients. The precomputation of the process noise profile

along the reference trajectory can be performed using linearized techniques

involving the Extended Kalman Filter (EKF) and Extended Schmidt-Kalman

Filter (ESKF), as described in the “Method of Solution” section. The process

noise precomputation can also be accomplished using sigma point transfor-

mations. The most common sigma point transformation is the Unscented

Kalman Filter (UKF), the unscaled form of which is applied by Stauch and

Jah to the SKF to derive the Unscented Schmidt-Kalman Filter (USKF) [119].

“Unscaled” indicates that no central sigma point value is computed and thus

no tuning parameters are necessary. Stauch obtains the same final form as in

Zanetti and DeMars [146], but through a different derivation. Note that, like

the ESKF, the USKF does not resolve the issue of onboard computational lim-

its. However, the USKF is a key element of the process noise precomputation

algorithm, as explained in more detail in the “Method of Solution” section.

DeMars and Bishop [40] use the linearized approach to map model un-

certainties to estimation state uncertainties for the purposes of precomputing

process noise for onboard navigation. They also analyze interpolation meth-

ods for precomputed process noise between measurement updates. The current

work takes these efforts a step further by incorporating the precomputed pro-

cess noise into the onboard state and covariance estimation. In addition, we
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show how a covariance analysis involving covariance corrections is necessary

to provide the appropriate cross-covariance contributions to the precomputed

process noise profile. Without updates, these cross-covariance contributions

grow without bound; without them, the precomputed process noise profile is

incomplete following an expected measurement update.

While there are many advantages to precomputing the process noise,

the technique assumes the truth trajectory will not deviate too far from a

reference trajectory. Another assumption is that the error in the dynamics

model parameters is roughly equivalent to the parameter uncertainties used in

the precomputation of the process noise. If the error in the dynamics model

parameters is significantly different than the assumed uncertainty, or there are

totally unmodeled perturbations, then the precomputed process noise might be

significantly different than the level of truth perturbations. In this scenario,

adding a blindly tuned standard process noise (on top of the precomputed

process noise described in this chapter) might be necessary to account for the

mismodeled and unmodeled perturbations. A limited analysis is performed to

investigate differences in the model error versus the assumed model uncertain-

ties. Also note that this chapter does not address another important tuning

parameter in an onboard filter: the measurement noise uncertainty. Appli-

cation of the new method using measurement model parameters as consider

states in order to compute appropriate measurement noise is saved for future

analysis.
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3.2 Process Noise

Before the process noise precomputation algorithm is derived, the rel-

evant process noise terms must be defined. Consider a random dynamical

process obeying the linear differential equation

∆ẋ(t) = F (t)∆x(t) +G(t)u(t) (3.1)

with a priori value ∆x0 at time t = 0. ∆x(t) is the deviation from the reference

state, u(t) is the system model error, F (t) describing the system dynamics,

and G(t) maps the model error to the state error. If linearizing a non-linear

system, F (t) and G(t) are partial derivative matrices evaluated at the nominal

state. “Formally” integrating Eq. 3.1 from t = 0 to t = tk gives

∆x(tk) = Φ(tk, t0)∆x0 +
∫ tk

0
Φ(tk, t′)G(t′)u(t′)dt′ (3.2)

where Φ(tk, t0) is the state transition matrix. Define the state error covariance

at time tk as

Pk ≡ E
[
∆x(tk)∆xT (tk)

]
(3.3)

and the process noise autocovariance as

Q(t, t′) ≡ E
[
u(t)uT (t′)

]
. (3.4)

There is no assumption that the process noise is uncorrelated at separate times.

The covariance at time tk is

Pk = Φ(tk, t0)P0ΦT (tk, t0)+
∫ tk

0

∫ tk

0
Φ(tk, t′)G(t′)Q(t′, t′′)GT (t′′)ΦT (tk, t′′)dt′dt′′

(3.5)
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assuming that u(t) is not correlated with the a priori value ∆x0; but not

assuming that u(t) will be uncorrelated with ∆x(t) at other times [121].

Assuming that Q(t, t′) = Q(t)δ(t− t′) (i.e. the process noise increments

are uncorrelated), one of the integrals in Eq. 3.5 is annihilated. More funda-

mentally, since future noise increments depend in no way on the system’s past

history, the present moments of ∆x(tk) give the only information useful for

predicting future values. This characteristic is known as the Markov property.

As a result of this assumption, the process noise for a spacecraft position and

velocity can be expressed as

Qk = q

1
3I3∆t3k 1

2I3∆t2k
1
2I3∆t2k I3∆tk

 (3.6)

where I3 is the 3x3 identity matrix, ∆tk is the propagation time from the

previous measurement time to the current measurement time, and q is the

single tuning parameter [121]. Equation 3.6 is a common process noise form,

which we shall hereafter refer to as the traditional form.

By contrast, Wright [141] observes that errors in the gravity model used

for orbit determination induce a noise process that is correlated in time. In

other words, Wright shows that when Eq. 3.1 describes errors in predicting the

evolution of a satellite orbit due to gravity model errors, there is a correlation

structure among future and past noise increments that makes Eq. 3.1 a non-

Markov process, which Q(t, t′) = Q(t)δ(t − t′) fails to capture. He provides

an alternative, autocorrelated, but approximately Markov, model suitable for

circular or near-circular orbits, based on projection of the gravity model error

covariance onto a sphere. However, there are many scenarios that do not
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meet the criteria required for Wright’s model, such as a descent trajectory to

the surface of a small body. Thus an alternative method is needed that can

determine process noise for any mission scenario.

3.3 Method of Solution

Denote the double-integral process noise covariance term of Eq. 3.5 as

Qd(tk, t0) =
∫ tk

0

∫ tk

0
Φ(tk, t′)G(t′)Q(t′, t′′)GT (t′′)ΦT (tk, t′′)dt′dt′′ (3.7)

This chapter investigates Qd(tk, t0) for arbitrary force model errors, with the

aim to develop approximations suitable for use in onboard robotic navigation.

In other words, the process noise used to inflate the state uncertainty across

propagation intervals in order to appropriately reflect dynamical model per-

turbations is precomputed along a reference trajectory. To understand how

this can be done, it helpful to first describe the components of the covariance

propagation.

Let x(t) denote the Cartesian state of a satellite, which evolves accord-

ing to the propagation function φ:

x(t) = φ(t, x0, c) (3.8)

where c is a vector of uncertain model parameters. Let x̂(t) and ĉ respectively

be the estimate of x(t) and c maintained by a navigation filter, which assumes

the model

x̂(t) = φ̂(t, x̂0, ĉ) (3.9)
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Then the state error can be written as

∆x(t) = φ(t, x0, c)− φ̂(t, x̂0, ĉ) (3.10)

Adding and subtracting φ(t, x̂0, c) yields

∆x(t) = [φ(t, x0, c)− φ(t, x̂0, c)] + [φ(t, x̂0, c)− φ̂(t, x̂0, ĉ)] (3.11)

The first bracketed expression is the error due solely to the initial state error,

and the second bracketed expression is the error due solely to force model

errors. Rewriting these expressions as

∆x(t) = ex0(t) + ec(t) (3.12)

the covariance of the final error can be written as
P (t) = E

[
ex0e

T
x0 + ece

T
c + ece

T
x0 + ex0e

T
c

]
= Px0(t) + Pcc(t) + Pcx0(t) + P T

cx0(t)
(3.13)

Note that there are three contributions to the final mapped covariance: Px0(t)

(contribution from the initial state uncertainty), Pcc(t) (directly mapped con-

tribution from the model uncertainty), and Pcx0(t) +P T
cx0(t) (cross-correlation

contribution between the state uncertainty and the model uncertainty). The

Px0(t) term is typically computed in the onboard filter, using the limited dy-

namical models and assumed model values. The onboard filter also adds pro-

cess noise to the mapped covariance, under the assumption that the dynamics

are not modeled perfectly. Thus it is ideal to use the sum of the Pcc(t) and

Pcx0(t) + P T
cx0(t) terms as this process noise. Comparing equation 3.13 to

equation 3.5 and 3.7, the expression for Qd(tk, t0) becomes
Qd(tk, t0) = Pcc(tk, t0) + Pcx0(tk, t0) + P T

cx0(tk, t0)

= P (t)− Px0(t)
(3.14)
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However, due to onboard computational limits, these values are precomputed,

which requires that they be computed along a known reference trajectory.

To precompute Qd(tk, t0) for each interval of a reference trajectory, the new

approach makes use of consider covariance and filtering methods such as the

ESKF [140], USKF [119], and the newly developed Additive Divided Difference

Schmidt Kalman Filter (ADSF) described in the next section. The resulting

precomputed process noise can be used in computationally efficient filters such

as the EKF. Note that the result of the subtraction in equation 3.14 has the

potential to be come negative definite if the reference trajectory used differs

greatly from the truth trajectory; for this reason, a small additional standard

process noise quantity may become necessary.

These covariance contributions can be mapped via linearized integra-

tion or by sigma point transformations. The linearized covariance propagation

equations that are numerically integrated are obtained from the SKF, as de-

scribed by Woodbury [140] and DeMars [40]:

˙̂x(t) = F (t)x̂(t) +G(t)c

Ṗxx(t) = F (t)Pxx(t) + Pxx(t)F T (t) + Pxc(t)GT (t) +G(t)P T
xc(t)

Ṗxc(t) = F (t)Pxc(t) +G(t)Pcc

(3.15)

where c is the nominal vector of considered model parameters (which are in

general not equal to the truth model parameters). Note that the integration of

Pxx(t) is dependent on Pxc(t). Thus the final two terms of the Ṗxx(t) equation

cannot be integrated independently due to this coupling, though doing so

can provide a reasonable approximation for some systems. Additionally, the
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dependence on the Pxc(t) terms requires that the measurement updates of the

Pxc(t) be included, as described in the equations:

ȳ = Hxx̄+Hcĉ

Pxy = P−xxH
T
x + P−xcH

T
c

Pyy = HxP
−
xxH

T
x +HxP

−
xcH

T
c +HcP

−
cxH

T
x +HcP

−
ccH

T
c +R

K = PxyP
−1
yy

P+
xx = (I −KHx)P−xx −KHcP

T
xc

P+
xc = (I −KHx)P−xc −KHcP

T
cc

(3.16)

where Hx and Hc are the measurement partials with respect to the state and

consider parameters, R is the measurement covariance, and K is the Kalman

gain. Note that when performing these updates as part of the precomputation

of the process noise, the state is not updated (as there are no measurements)

and the reference trajectory is used to determined expected measurements

at each time (as is done in standard covariance analysis). The covariance

update expressions in equation 3.16 can also be formulated using the Joseph

form [121], which is more computationally tractable and holds true when the

Kalman gain K is not optimal (though the non-Joseph form is still often used

for onboard filters, despite the suboptimal gain).

The final process noise profile is obtained by taking the difference in

the prefit P−xx terms between the standard KF and the SKF at each measure-

ment time (as described in equation 3.14), which are computed by performing

covariance propagation and updates along a reference trajectory. This differ-

ence provides the full process noise contribution of both the Pcc(tk, t0) and
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Pcx0(tk, t0) + P T
cx0(tk, t0) terms. Note that the KF and SKF covariance analy-

ses are performed simultaneously, and the computed process noise after each

propagation is added to the KF propagated covariance before performing the

KF covariance update (keeping the KF covariance and state portion of SKF

covariance equal before performing the covariance updates).

As a result, the filter performance is approximately equal (and exactly

equal for linear systems) to the SKF, without the need to compute onboard

the effect of the consider parameter uncertainty on the state uncertainty. The

overall algorithm is depicted in Figure 3.1. Note how the precomputed pro-

cess noise is dependent not only on the model parameter uncertainty, but also

the initial state uncertainty (due to the measurement updates of the cross-

covariance terms), the measurement model and nominal expected measure-

ments along the reference trajectory, and the time between measurements.

3.3.1 The Additive Divided Difference Sigma Point Schmidt-
Kalman Filter

While the process noise profile can be precomputed with a linearized

approach using the EKF and ESKF, as shown in equations 3.15 and 3.16, it

is also possible to accomplish this precomputation using sigma point transfor-

mations. One sigma point formulation that can be employed is the Additive

Divided Difference Sigma Point Filter (ADF) described in section 2.2.2.1.

To reformulate the ADF as the ADSF consider filter, the consider pa-

rameters are added to the state and the state and covariance propagation steps

are performed in the same way. For the state and covariance update steps,
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Figure 3.1: Process Noise Algorithm

the state update to the consider parameters is set to zero, and the portion of

covariance directly corresponding to the consider parameters is also not up-

dated (though the state and cross-covariance terms are corrected), as shown

by

P+
zz =

[
P−xx P−xc
P−cx Pcc

]
−
[
KxPyyK

T
x KxPyyK

T
c

KcPyyK
T
x 0

]
(3.17)

where K =
[
Kx

Kc

]
, or using the difference method as described in equation 2.18

and setting the Pcc update to zero by reseting it to the original value. The

difference in state covariance matrices for the ADF and ADSF are computed

to generate the process noise profile that is used in the onboard filter.
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3.4 Linear Problem: Falling Object Scenario

A simple, linear estimation problem is used throughout the literature

for demonstration of consider covariance analysis and filtering techniques, and

proves effective in showing the utility of the new process noise computation

method. Additionally it is used to verify correct implementation of the al-

gorithms. The problem is a one dimensional falling object scenario, with an

uncertain gravity model value. This problem is employed in Stauch [119],

Tapley [121], Lisano [77], and Woodbury [140]. The point mass in freefall is

shown in Figure 3.2. The state consists of the position x and velocity ẋ, while

the gravitational parameter g is a consider parameter. The position range y

is directly measured.

x y(obs) 

g 

Figure 3.2: Free Falling Point Mass

3.4.1 Simulation Scenario

The nominal initial conditions are

xnom(t0) = 1 m, ẋnom(t0) = 0 m/s, gnom = 10 m/s2 (3.18)

while the truth initial conditions are

xtru(t0) = 0.8 m, ẋtru(t0) = 0.3 m/s, gtru = 9.8 m/s2 (3.19)
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The initial state covariance, state-consider cross-covariance, consider parame-

ter g uncertainty, and measurement uncertainty are

Pxx0 =
[
1 0
0 1

]
, Pxc0 =

[
0
0

]
, Pcc = [1] , R = [1] (3.20)

Note that the initial error for this single simulation is well within the initial

state and consider parameter uncertainty distributions.

The position range y is directly measured every second from 0 to 10

seconds, and the measurement error is set to zero for this simple linear problem

(though importantly the measurement uncertainty is non-zero for each mea-

surement). The process noise for this linear problem is computed as described

in the “Method of Solution” section, taking the difference between the pre-

fit KF state covariance and prefit SKF state covariance at each measurement

time. The precomputed process noise is added to the state covariance at the

end of each propagation interval between measurements.

3.4.2 Results

First the linear scenario is run with both the KF and SKF, with no

process noise added to the KF after each propagation of the state uncertainty.

The resulting position and velocity errors and 1-σ covariance values are shown

in Figure 3.3. These results are identical to those shown in Stauch [119]. The

KF without process noise added does not account at all for the uncertainty in

the gravity value, and as a result the estimated covariance artificially converges

while the state error diverges.
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Figure 3.3: SKF versus KF without Process Noise

To account for the uncertainty in the gravity term, process noise must

be added. To start, the consider state (gravity) uncertainty is mapped into

the state space over each propagation interval, which provides the Pcc(t) term

as shown in equation 3.13. Using only this term as the process noise, the

KF performance significantly improves, as shown in Figure 3.4. Most of the

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2
Position Estimation

E
rr

o
r,

 C
o

v
 1

−
σ

 [
m

]

Time [sec]

(a) Position

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Time [sec]

E
rr

o
r,

 C
o

v
 1

−
σ

 [
m

/s
]

Velocity Estimation

 

 

KF Error, Only Mapped Gravity Uncertainty PN

1−σ KF Cov

SKF Error

1−σ SKF Cov

(b) Velocity

Figure 3.4: SKF versus KF with Only Mapped Gravity Uncertainty Process
Noise
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performance gain of the SKF over the KF is achieved by adding this Pcc(t)

process noise term. However, the KF performance does not fully match the

performance of the SKF, with slightly lower uncertainty values and slightly

higher error values. In an attempt to achieve better performance with the KF,

the process noise values Pcc(t) derived from the gravity uncertainty mapping

are multiplied by a factor of three. This simple multiplication of the covariance

is equivalent to how standard filter tuning operates (except standard process

noise doesn’t have the Pcc(t) starting point). The result is shown in Figure

3.5. A factor of three was chosen (by trial and error) to obtain KF errors on
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Figure 3.5: SKF versus KF with 3x Only Mapped Gravity Uncertainty Process
Noise

par with the SKF, but as a result the velocity uncertainty is greatly inflated.

To understand why the KF doesn’t match the SKF, and why no amount

of modifying the Pcc(t) term will produce matching results, is it helpful to plot

the magnitude of the Pcc(t) variance values versus the 2Pcx0(t) term variance

values and the full process noise P (t) variance values as described in equation
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3.13. This plot is shown in Figure 3.6. Because of the linear nature of the
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Figure 3.6: Process Noise Component Variance Magnitudes (1-σ)2

problem, the Pcc(t) contribution is identical for each segment, but the 2Pcx0(t)

cross contributions change significantly and are greater in magnitude than the

Pcc(t) contribution starting at two seconds past the start time. Note that

the variance values are plotted instead of the 1-σ standard deviation values

to show how the Pcc(t) and 2Pcx0(t) cross contribution values added together

produce the full process noise variance values. If the full process noise is used

in the KF, the resulting performance matches exactly the SKF, while using

the computationally much less expensive KF, as shown in Figure 3.7.

Note that identical precomputed process noise values and overall sim-

ulation results are achieved using three different filter forms: the EKF and

ESKF, the UKF and USKF, and the ADF and ADSF. Achieving identical re-

sults for these different non-linear filters in a linear problem provides a strong

sanity check for the algorithm implementation.
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Figure 3.7: SKF versus KF with Full Precomputed Process Noise

3.5 Nonlinear Problem: Asteroid Descent Scenario

Precomputed process noise is next generated for a nonlinear estima-

tion problem: a spacecraft descent scenario to a checkpoint above the sur-

face of an asteroid, using surface landmarks for optical navigation. The de-

scent scenario simulated matches the currently planned descent trajectory of

NASA’s OSIRIS-REx asteroid sample return mission during the sample col-

lection phase of the mission, ending at a predetermined checkpoint above the

surface. The simulated camera also matches the specifications of the Nav-

Cam camera intended for optical navigation during the descent. There are

several challenges in this scenario which make use of the new process noise

precomputation method:

• Onboard computational limits

• Prior to the descent trajectory, only limited gravity field estimates are

available
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• The magnitude of the central body and gravity harmonics perturbations

increase significantly during the descent trajectory, which exacerbate dy-

namical errors resulting from lower order gravity term errors and trun-

cation of higher order gravity terms

3.5.1 Simulation Scenario

The reference descent trajectory employed in this simulation is shown

in the inertial and body-fixed frames in Figure 3.8. Note that the object

plotted in the Figure 3.8a is the Brillouin Sphere (i.e. a sphere with radius

equal to the largest radius of the asteroid), while the object in Figure 3.8b is

a triaxial ellipsoid with minimum, median, and maximum radii corresponding

to the current best estimated dimensions of the asteroid Bennu (the intended

target of the OSIRIS-REx mission). Figure 3.8b also shows a portion of the

300 predetermined and randomly located surface landmarks assumed known

for this simulation. Remaining above the Brillouin Sphere also allows spherical

harmonics to be used for the entire trajectory.

The simulation setup, including timing and initial spacecraft states, is

described in Table 3.1. Note that for the onboard optical navigation, photos

are taken every two minutes during the descent trajectory. The descent tra-

jectory is also chosen such that lit landmarks will visible for the entirety of

the trajectory.

The properties of the small body used for the simulations are given in

Table 3.2. Note that the triaxial ellipsoid from Figure 3.8b is used as the shape

model in the simulations. While a higher fidelity polyhedron shape model is
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(a) Inertial Frame

(b) Body-Fixed Frame

Figure 3.8: Descent Trajectory

Table 3.1: Simulation Setup

Simulation Parameter Values
Epoch Time 11-Oct-2019 12:17:04.953
End Time 11-Oct-2019 16:17:04.953

Minimum Time Before First
Update 1 minute after epoch

Time Between Photos 2 minutes
Spacecraft Initial Position [-0.644, 0.288, -0.655] km
Spacecraft Initial Velocity [1.182x10-5, 3.009x10-5, 6.368x10-5] km/s
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available, it is not necessary to evaluate the new process noise algorithm. The

Table 3.2: Asteroid Properties
Simulation Parameter Nominal Values

Initial Pole Right Ascension, Declination 0, 10 deg
Pole Right Ascension, Declination Rates 2, 3 deg/Julian century

Longitude of the Prime Meridian at Epoch 0 deg
Rotation Rate 2010.489449 deg/day

GM 5.2x10-9 km3/s2

GM Uncertainty (1- σ) 5.2x10-11 km3/s2 (1%)
Radius Values 0.259 × 0.250 × 0.230 km

Number of Landmarks on surface 300
Nominal Gravity Harmonics 4 x 4 (Bennu Estimate) [83]

Truth Gravity Harmonics 12 x 12 (Bennu, Perturbed)
Gravity Harmonic Uncertainties Modified Kaula Rule [83]

asteroid GM and nominal spherical harmonic coefficients for Bennu are pro-

vided in McMahon [83]. McMahon also provides a Modified Kaula Rule that

has been derived for Bennu, which provides realistic maximum uncertainties

for the gravity spherical harmonic coefficients. The upper bound expressions

of both the zonal coefficients (0.183/n2) and non-zonal coefficients (0.043/n2)

are used as the uncertainties in the harmonic coefficients up to degree and

order 12. Note that the uncertainties for the GM and lower order terms are

likely to be significantly lower from estimation of the terms in the mapping

orbits of the preceding mission phases, but a more strenuous scenario is sought

to evaluate the new precomputed process noise method.

83



3.5.2 Dynamical Model

The spacecraft position and velocity are propagated via numerical inte-

gration between picture times using fixed step RK8 propagation. The covari-

ance is numerically integrated to the same times, also using fixed step RK8

propagation. The simulation includes central body acceleration and pertur-

bations from a spherical harmonic gravity field, for both the truth and filter

dynamics. Standard perturbations such as third body perturbations (TBP)

and solar radiation pressure (SRP) are not included for simplicity, as the focus

of this analysis is to evaluate the new process noise algorithm in the context

of gravity field uncertainty. These SRP and TBP terms also do not change

significantly in magnitude over the descent trajectory, unlike the direct gravity

forces and perturbations.

A 4x4 degree and order spherical harmonic gravity model of the Bennu

asteroid that is employed for mission design analysis of the OSIRIS-REx mis-

sion is used for the nominal onboard dynamics model. To obtain a higher

order 12x12 gravity field for each of the truth trajectories, first the uncertain-

ties for the 12x12 field are sampled to generate errors for each of the 12x12

field coefficients. For the lower order 4x4 field values, these errors are added

to the non-zero nominal 4x4 field values (which are expected to be estimated

in the prior mapping orbit) to obtain the truth 4x4 coefficients. For the higher

order terms up to 12x12, these errors are added to the zero value (i.e. trun-

cated) nominal coefficients: the error values become the coefficient values. As

described in the Simulation Scenario section above, these coefficient uncertain-

ties are obtained from the Modified Kaula Rule [83], which provides maximum
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deviations from zero of the spherical harmonic coefficients. Thus using these

uncertainties for the higher order terms allows us to account for the “errors of

omission” introduced by the truncation of the gravity field.

3.5.3 Measurement Model

The navigation simulation uses optical landmark measurements, as de-

fined in section 1.1. The assumed landmark measurement errors are in line

with those expected from using the maplet stereophotoclinometry method for

the landmarks [44]. It is assumed that the spacecraft is commanded to point

its camera at the center of mass of Bennu using onboard position and attitude

knowledge at every picture time using reaction wheels or thrusters. A similar

simulation can be performed using a predetermined inertial attitude profile.

The navigation camera parameters are described in Table 3.3. These

parameters match the NavCam camera planned for navigation use in the

OSIRIS-REx mission. Camera distortion effects that are typically calibrated

in flight are not included in these simulations, nor are the remaining errors

after calibration at the FOV edges that are more likely for a wide FOV lens.

Table 3.3: Navigation Camera Properties

Simulation Parameter Nominal Values
Focal Length 7.68 mm
Sensor Array 2592 × 1944 pixels
Pixel Density 454.54 pixels/mm

Field of View (FOV) 40.74◦ × 31.12◦
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3.5.4 Estimation Filter Architecture

A sequential EKF is employed to evaluate the effectiveness of the new

process noise model. The estimated states are the spacecraft position and

velocity. It is assumed that the small body orientation, rotational velocity,

shape model, gravity field, and set of surface landmarks listed in Table 2.2

have been previously estimated. These quantities are held as constants in the

“onboard” filter. A summary of onboard filter parameters is shown in Table

3.4 [15, 16].

Table 3.4: Onboard Filter Parameters
Simulation Parameter Nominal Values

Initial Filter Position Covariance
(Radial, In-Track, Cross-Track)

(1-σ)
[0.012, 0.053, 0.004] km

Initial Filter Velocity Covariance
(Radial, In-Track, Cross-Track)

(1-σ)

[3.92x10-6, 5.06x10-7, 3.10x10-8]
km/s

Measurement Noise Covariance
(1-σ) [29.5, 29.5] arcsec ([0.5, 0.5] pixels)

Traditional Process Noise q for
Position and Velocity

1x10-15 km2/s3

The spacecraft attitude is not estimated, nor are knowledge attitude

errors added for each photo, because it is assumed that a highly accurate

separate attitude determination system (ADS) consisting of gyroscopes, star

cameras, and an attitude determination filter will provide attitude estimates

at each photo time. Should ADS knowledge attitude errors prove significant

(as is predicted for the actual OSIRIS-REx mission due to expected thermal

variations in the spacecraft structure), it is possible to further correct the
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attitude using landmark observations [93]. It is also not the focus of this

analysis to investigate spacecraft attitude estimation performance, but rather

how the new process noise algorithm affects spacecraft position and velocity

estimation performance.

3.5.5 Monte Carlo Simulation Design

Monte Carlo analyses are employed to compare the standard and pre-

computed process noise techniques. A single estimated state and covariance

is assumed known at the start of the descent trajectory. Also assumed known

are the nominal estimated coefficients for a 4x4 gravity field, as well as a

covariance matrix that includes uncertainties up to degree and order 12.

The errors for the initial state, GM, and gravity field coefficients are

sampled assuming a Gaussian distribution with the 1-σ values provided in Ta-

ble 3.5. The error in the GM and gravity spherical harmonics is re-sampled

at each photo time to obtain perturbations that are more like process noise,

but comparable results are achieved if the error in the GM and gravity spher-

ical harmonics is sampled only once at the beginning of each simulation trial.

Note that modern image processing capabilities can generate landmark cen-

ter values at sub-pixel precision [19, 65] (depending on the relative resolution

of the landmark maplet data and the image pixel scale). Thus 0.5 pixel er-

rors, equivalent to 9 arc seconds angular error for this camera, are used in

this simulation. In higher fidelity simulations a resolution-dependent term is

used for filter measurement noise value, which is neglected in this example for

simplicity.
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Table 3.5: 1-σ Monte Carlo Error Parameters
Simulation Parameter 1-σ Values

Spacecraft Initial Position (Radial,
In-Track, Cross-Track)

[0.012, 0.053, 0.004] km

Spacecraft Initial Velocity (Radial,
In-Track, Cross-Track)

[3.92x10-6, 5.06x10-7, 3.10x10-8]
km/s

Observation [29.5, 29.5] arcsec ([0.5, 0.5] pixels)
GM 5.2x10-11 km3/s2 (1%)

Asteroid Gravity Coefficients Modified Kaula Rule [83]

The initial state errors are used to distribute the initial truth states

about the nominal. As a result, a different truth trajectory and set of ob-

servations exists for each Monte Carlo trial. A small body mission will have

a single estimated nominal state at the beginning of the descent trajectory,

which will be used as the reference trajectory for precomputing the process

noise. The truth state will not be known, but the Monte Carlo analysis will re-

veal the performance of the filter with the precomputed process noise method

for many different possible truth trajectories. The same logic extends to the

asteroid gravity coefficients: only estimates will be known, about which the

precomputation of the process noise will occur. As a result, the landmark

measurements are at least slightly different for each Monte Carlo trial. The

variation in the landmarks detected and used is valuable as an evaluation of

the filter performance using precomputed process noise.

3.5.6 Application of Precomputed Process Noise Method

For this scenario, the model parameters of interest that are used to

generate precomputed process noise are the gravitational spherical harmonic
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coefficients. Using the uncertainties in the GM and spherical harmonics gravity

coefficients through degree and order 8 (which is higher order than the 4x4

gravity field used in the “nominal” propagation function φ̂, but lower order

than the 12x12 gravity field used in the “truth” propagation function φ), the

Orbit Error Autocovariance Approximation (i.e. the precomputed process

noise profile to use in the onboard filter) is computed via either the linearized or

sigma point approaches described in the “Method of Solution” section. These

different approaches deliver approximately the same process noise profile in

this problem. When using the DDT, the h tuning parameters described in

equations 2.3, 2.5, and 2.6 are set equal to standard value of
√

3 [93].

The resulting precomputed 6x6 process noise covariance matrices for

each picture time are stored as a 6x6x121 three dimensional array (the 6x6

covariance matrix at 121 time steps), totaling 4356 double precision numbers

(34 kB). A table containing these values is possible to use directly onboard if

fixed step integration and set measurement times are used. If greater amounts

of process noise data are needed, variable step integration is employed, or

photos don’t occur at predicable times, the process noise covariance sigma

and correlation coefficient values can be fit to polynomials. See DeMars [40]

for a detailed study of interpolation methods for precomputed process noise

between measurements (which would likely need only minimal adjustment to

account for measurement updates).

The spacecraft position and velocity covariance is propagated using

both the precomputed process noise model and standard process noise model.
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The resulting filter performance and spacecraft state uncertainty representa-

tion is evaluated for both approaches.

3.5.7 Results

The precomputed process noise position and velocity magnitudes for

each two minute interval between measurements for this scenario is plotted

in Figure 3.9. Note how the process noise changes significantly in magnitude

over the simulation timeline, a feature that is not possible with the traditional

process noise model. The cross-covariance terms 2Pcx0 are found to be many

orders of magnitude smaller than the Pcc(t) terms in this scenario (unlike

for the linear estimation problem). In such cases, the required computation

can be reduced by calculating only the Pcc(t) process noise component for

each interval. However, in this analysis, all terms of the process noise are

precomputed and utilized.
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Figure 3.9: Precomputed Process Noise
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To determine the improvement from using the precomputed process

noise shown in Figure 3.9, a 100 trial Monte Carlo simulation is run using

standard process noise as defined in equation 3.6 and using the q value from

Table 3.4. The resulting errors and state uncertainty are shown for position

and velocity in Figure 3.10. Note that the Max and RMS statistics provided

are for the post-initial-convergence period, starting at the sixth picture time.

Next the same Monte Carlo simulation is run using the precomputed process

noise profile, with results shown in Figure 3.11.

The precomputed process noise profile results in a 9% reduction of the

position error RMS and 17% reduction of the velocity error RMS. Additionally

the uncertainty now much better matches the error distribution, particular for

the portion of the simulation between hour 3 and hour 4. The “velocity smug-

ness” (i.e. overconfidence in the accuracy of the velocity errors evident from

lower formal covariance values) has special significance for the OSIRIS-REx

mission due to an abort trigger based on “time of touch” that is sensitive to

velocity errors. Note that the position errors and uncertainty are less affected

by the process noise chosen than the velocity errors due to the strong position

information obtained from low optical measurement errors and uncertainty.

For the standard process noise method, a q value of 1x10-15 km2/s3 is

chosen as the best balance of performance between the start and end of the

simulation, an unsatisfactory compromise no longer necessary with the new

process noise method. Also unnecessary is the extensive time that it takes to

find such a compromise.
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Figure 3.10: Descent Scenario with Traditional Process Noise
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Figure 3.11: Descent Scenario with Precomputed Process Noise

The performance difference between the standard process noise model

and the newly developed precomputed process noise becomes more pronounced

as the uncertainties in the consider parameters increase. The 1-σ uncertainty

values in the GM and gravity coefficient values used to precompute the process
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noise and to sample the truth coefficients are increased by one order of mag-

nitude, and the resulting performance with the standard process noise versus

the precomputed process noise are shown in Figures 3.12 and 3.13. Note that

the process noise q parameter used for the original process noise method is

increased from 1x10-15 km2/s3 to 1x10-14 km2/s3. The precomputed process

noise profile results in a 16% reduction of the position error RMS and 44%

reduction of the velocity error RMS.

To determine how the performance of the precomputed process noise

changes when the gravity coefficient errors do not match the uncertainty values

used to generate the precomputed process noise, the gravity coefficient error

1-σ values are deterministically varied from -50% to +50% of the 1-σ values

used for the process noise precomputation. A 100 trial Monte Carlo simula-

tion is performed for each each 10% interval, and the position and velocity

error RMS for each interval are plotted in Figure 3.14. Note that lower errors

are obtained when the uncertainty values for the precomputed process noise

are higher than the error 1-σ values, at the expense of slightly lower formal

covariance accuracy. This result suggests that using conservative higher-than-

expected gravity uncertainty values in the process noise precomputation may

provide lower state errors in an actual mission (though with slightly less re-

alistic uncertainties). A more complete sensitivity analysis of mismatching

distributions of the model parameter error versus uncertainty used in the pro-

cess noise precomputation is saved for future work.

Figure 3.15 shows the number of landmarks visible at each picture

time for a single Monte Carlo trial. The plotted number of landmarks is
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Figure 3.12: Descent Scenario with Traditional Process Noise, 10x Gravity
Uncertainty And Error
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Figure 3.13: Descent Scenario with Mapped Model Uncertainty as Process
Noise, 10x Gravity Uncertainty And Error

representative of the number of visible landmarks in other trials, and the

visible landmarks for each trial are identical in the simulations using standard

process noise versus the new precomputed process noise.
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Figure 3.15: Number of Visible Landmarks For Descent Trajectory

In an effort to determine how well the process noise precomputed for

a particular reference trajectory works with larger variations of the truth tra-

jectory away from the reference trajectory, the initial spacecraft position and

velocity errors and uncertainties from Tables 3.4 and 3.5 are increased from

zero to ten times the original values. For each level of initial state error and

uncertainty, 100 Monte Carlo trials are performed. The resulting percentage
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of diverged trials for each level of initial state error and uncertainty are shown

in Figure 3.16. A diverged trial is defined as having position error greater than

0.2 meters after the initialization period, which is chosen based on the magni-

tude of the formal uncertainties after the initialization period. It is seen that

most runs diverge when the initial state errors and uncertainties are increased

by a factor of 6 or higher.
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Figure 3.16: Percentage of Diverged Trials For Each Level of Initial State Error
and Uncertainty

It is not the intent of this chapter to provide detailed timing com-

parisons, but some approximate timing values can give the reader a sense of

the computational savings achieved by precomputing the process noise before

using it in a computationally efficient KF. All code is written in Fortran, us-

ing the latest 1995 and 2003 standards, and compiled using standard release

mode settings in 2011 Intel Visual Fortran. All simulations are run on a single

processor of a quad-core Intel Xeon CPU running at 3.60 GHz. The precom-

putation of the process noise using the DDT takes approximately 371 seconds

(6.2 minutes), while a single trial of the Monte Carlo simulation takes 13
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seconds to perform the onboard estimation steps (approximately 3.5% of the

process noise precomputation time). To achieve a comparable level of estima-

tion accuracy and covariance realism without precomputing the process noise,

a full SKF would be necessary to run onboard the spacecraft, which would

take approximately 200 seconds instead of 13 seconds (increasing the required

onboard computation by 15x). Note that for higher order gravitational fields,

or if other force model parameters are considered, the onboard computational

savings increase approximately with O(N2), where N is the number of state

and consider parameters [34].

Note that the filter type used for the process noise precomputation and

the onboard filter are interchangeable: it is entirely possible to use other filters

such as the UKF or ADF onboard the spacecraft, with no requirement for the

type of filter used in the process noise precomputation. The only stipulation

is that the onboard filter must be able to use an additive process noise in the

propagation of the covariance matrix.

3.5.8 Future Work

Future analysis involving the new precomputed process noise method

includes application to other estimation problems that possess mismodeled

or unmodeled perturbations, particularly for large, state-dependent perturba-

tions. For the specific problem of spacecraft estimation, the spacecraft mass,

area, and reflectivity coefficient could be included as consider parameters when

precomputing the process noise, which would better account for SRP and TBP
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errors. Another possibility would be to apply this process noise technique to

other perturbations that change with time, such as atmospheric drag.

Another possibility for future research is the generation of functions

that provide averaged process noise as a function only of the spacecraft radius

magnitude, or other temporal/spatial variations. Such functions could prove

useful for mission design and analysis of trajectories about small bodies, elim-

inating the need to recompute the process noise for each reference trajectory.

It is also possible to add multiple traditional process noise components

to better tune the filter: for example, different levels of traditional process

noise can be added in the along-track and cross-track directions. Alterna-

tively, different levels of traditional process noise can be added based on an

exponential model of the radius of the spacecraft position (derived manually

instead of the averaged process noise approach from the precomputed process

noise proposed above). Both of these approaches involve adding more manual

tuning parameters to the process noise method. As a result, obtaining ini-

tial tuning parameters can be even more challenging. Thus, a future analysis

comparing the multi-parameter traditional process noise model to the precom-

puted process noise approach is likely valuable, as is a study of how the use

of the precomputed process noise approach might assist in initially tuning the

multi-parameter traditional process noise model.

Other items for future analysis include: a simplified nonlinear prob-

lem that bridges the gap between the linear example provided here and the

more realistic nonlinear scenarios; a more thorough investigation of the error
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required for the precomputed process noise approach to consistently fail, from

more significant deviations in the reference trajectory away from the truth

trajectory to timing errors in the pictures (or the complete loss of particular

pictures); as well as an analysis of the effectiveness of a bank of different pro-

cess profiles used for different trajectories (which would include a study of the

additional computational resources required).

3.6 Conclusions

The primary contribution of this chapter is an approach that applies

known consider covariance analysis tools and filters to precompute a process

noise profile along a reference trajectory, and then employ that process noise

in an onboard estimation filter. As a result, the need for traditional extensive

manual tuning of process noise is greatly reduced, and robotic systems that

experience significant state-dependent perturbations can employ appropriate

levels of process noise in onboard navigation filters.

In addition to providing better estimation performance, the new process

noise method also allows the onboard navigation filter to better represent the

uncertainty in the system state. The example considered here is a better

representation of the position and velocity uncertainty of a spacecraft during

a descent trajectory that contains gravity perturbations that vary dramatically

in magnitude across the reference trajectory.

A secondary contribution of this chapter is the translation of the ADF

to a consider filter form. The derivation is almost identical to the USKF,
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where the considered parameters are added to the “state” and then simply not

updated in the measurement update portion of the filter (for both the state

and covariance updates).

There are limitations of the new precomputed state-dependent process

noise method. A reference trajectory must exist, and the vehicle must not

deviate too far from the reference path for the precomputed process noise

to be effective. The errors in the considered model parameters must also

approximately match the model parameter uncertainties used for the process

noise precomputation. However, it is noted through a limited analysis that

conservative uncertainties in the process noise precomputation may prove more

effective than less conservative uncertainties (particularly if there is risk of

underestimating the truth gravity errors). While the new precomputed process

noise method is shown to be effective for the two examples described in this

chapter, the method may prove less reliable and effective for scenarios that do

not meet these conditions.
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Chapter 4

Spin State Estimation of Tumbling Small
Bodies

It is expected that a non-trivial percentage of small bodies that future

missions may visit are in non-principal axis rotation (i.e. “tumbling”). The pri-

mary contribution of this chapter1 is the application of the Extended Kalman

Filter (EKF) Simultaneous Localization and Mapping (SLAM) method to es-

timate the small body spin state, mass, and moments of inertia; the spacecraft

position and velocity; and the surface landmark locations. The method uses

optical landmark measurements, and an example scenario based on the Rosetta

mission is used. The SLAM method proves effective, with order of magnitude

decreases in the spacecraft and small body spin state errors after less than a

quarter of the comet characterization phase. The SLAM method converges

nicely for initial small body angular velocity errors several times larger than

the true rates (effectively having no a priori knowledge of the angular velocity).

Significant errors in the initial body-fixed landmark positions are effectively es-

1The work in this chapter has been published as a journal paper:

• Olson, C., Russell, R., Bhaskaran, S., “Spin State Estimation of Tumbling Small
Bodies,” The Journal of the Astronautical Sciences, Vol. 63, No. 2, June 2016, pp.
124-157.

The analysis was performed primarily by the first author, with general development guidance
and management provided by the co-authors.
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timated, but surface landmark generation and identification are not addressed

in this chapter (see Chapter 5). The algorithm remains effective for a range of

different truth spin states, masses, and center of mass offsets that correspond

to expected tumbling small bodies throughout the solar system.

4.1 Introduction

Determining a small body’s spin state is one of the primary challenges

during the early arrival mission stages. As the Rosetta spacecraft approached

Comet 67P/Churyumov–Gerasimenko in the summer of 2014, mission navi-

gators could not be certain the comet was in principal axis rotation, despite

estimates provided by Hubble observation campaigns in 2003 [18, 70]. The po-

tential for non-principal axis rotation, also known as “tumbling” or “complex

rotation,” is based on the current estimate that a significant fraction of small

bodies in the solar system are tumbling [97]. Most tumbling bodies are smaller

(less than 10 kilometers in diameter) and slow rotators (with rotational period

greater than two days), but small fast rotators that are also tumbling have

been detected as well [112]. Note that tumbling is not truly chaotic motion, as

torque free motion is fully predictable using elliptic integrals [110]. However,

torques from forces such as outgassing can alter the motion.

In general it is not possible to know with strong certainty the degree

to which a small body is tumbling before arriving at the body, especially for

bodies that have not previously had a close approach with the Earth. For-

tunately Comet 67P/Churyumov–Gerasimenko was found to be primarily in

principal axis rotation (over the time scales needed), and thus the established
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tools were sufficient for the navigation task [18]. However, ESA has revealed

that the spin rate of Comet 67P/Churyumov–Gerasimenko is slowing down

by approximately one second per day due to gas jet activity.2 Thus, the spin

rate must be continually re-calibrated, resulting in increased work for mission

operators. The initial uncertainty in the small body spin state and the chang-

ing nature of the spin state over time are strong motivators for a navigation

framework that can directly and continuously estimate the spin state from

landmark observations.

An Extended Kalman Filter (EKF) Simultaneous Localization and

Mapping (SLAM) method is employed for this purpose. SLAM is traditionally

associated with terrestrial robotics, and most applications of SLAM in the lit-

erature use optical and range measurements to estimate the vehicle state and

the surrounding static environment [9]. The method proposed in this chap-

ter differs from traditional terrestrial SLAM scenarios by estimating the spin

state of a small body using optical landmark observations, and uses an initial

spacecraft attitude estimate provided by a separate attitude determination

using star trackers and gyros. The method described below also differs from

previous applications of SLAM in the field of small body navigation [35, 36] by

estimating the spin state of the body simultaneously with the relevant inertial

spacecraft states (instead of relative to a particular body-fixed frame on the

surface of the body).

2http://aerosociety.com/News/Society-News/2998/Lecture-Report-Rosetta-
How-We-Landed-on-a-Comet
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The estimation process occurs during the small body characterization

phase, when the spacecraft is many small body radii away from the body. A

camera with a narrow field of view and long focal length is used, which makes

significant numbers of landmarks identifiable. The optical navigation method

using landmarks is well established in the literature [19, 90], and is described

in section 1.1. The objective of this chapter is to assess the ability of the

established EKF SLAM algorithm to effectively estimate the small body spin

state (along with other state parameters), and determine the practical limits

of how much initial small body spin state error the algorithm can handle. The

spin state of a small body can also be estimated independently with standard

batch methods, solving for the pole direction, nutation, precession, and spin as

described in the IAU models for planetary body attitude representation [116].

However, these models aren’t sufficient for long term motion of small bodies

due to the potential for forces that impart torques on the spin of the body,

such as out-gassing, solar radiation pressure, and gravity gradient affects if the

small body has any planetary flybys.

The estimated states include the inertial spacecraft position and ve-

locity; the small body orientation, angular velocity, mass (GM), and diagonal

moments of inertia; and the body-fixed surface landmark positions. These

quantities are estimated directly from pixel and line optical measurements of

previously identified surface landmarks. An estimate of the spacecraft attitude

is provided by an independent onboard attitude determination system (ADS)

consisting of gyroscopes, star cameras, and an attitude determination filter.

However, the spacecraft attitude can optionally be further corrected using the
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optical landmark measurements. Further attitude correction is more important

when ADS estimates are degraded (e.g. when no stars are available because

the small body fills the field of view of the star cameras). Euler angles are used

to represent the spacecraft attitude for ease of implementation (as well as use

of heritage algorithms), and Modified Rodrigues Parameters (MRP) are used

to represent the orientation of the small body in order to avoid singularities

(through the shadow switching method described in Appendix A).

Estimation of a rigid body spin state and moment of inertia ratios

using surface landmarks was first considered by Idle [55], as part of an effort

to estimate these quantities for a target spacecraft in Earth orbit using images

taken from a chaser spacecraft. However, he assumes the inertial locations of

surface features are provided at each observation time, which he then processes

in a batch least squares algorithm. The sequential SLAM algorithm presented

in this chapter here provides a means to not only estimate the spin state and

moments of inertia, but also estimate the locations of the landmarks on the

surface directly from the pixel and line values of the landmarks within each

image.

4.2 Optical Navigation Using Landmarks

The estimation algorithm proposed uses optical measurements, as de-

scribed in section 1.1. The simulated camera is comparable to the Charge-

Coupled Device (CCD) cameras used for navigation in previous small body

missions, with a focal length of 140 mm and a sensor array of 1024 by 1024

pixels, for a field-of-view (FOV) of approximately 5 degrees. The results of
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this chapter are generally applicable to any CCD with a similar focal length,

pixel array size, and FOV; which includes navigation cameras for the Rosetta

(focal length of 152 mm) [67], Dawn (focal length of 150 mm) [101], NEAR

Shoemaker (focal length of 168 mm) [53], and Hayabusa (focal length of 120

mm) [56].

The simulated camera in this chapter is assumed to be hard-mounted to

the spacecraft bus, and the camera frame is aligned with the spacecraft frame

for simplicity. Therefore the rotation matrix Ri2cam is equal to the rotation

matrix Ri2sc, as defined by

Ri2sc = R3(φsc)R2(π2 − δsc)R3(αsc) (4.1)

where φsc is the spacecraft twist angle, δsc is the declination value, and αsc

is the right ascension (RA) angle. The declination is subtracted from π/2

to avoid singularities. Ri2sc is computed using the current estimated small

body orientation parameters, and the camera boresight is along the spacecraft

z-axis.

The simulated camera pixel density terms Kx and Ky from equation

1.5 are set to heritage values of 83.333 [90] and the off-diagonal terms are set

to zero. Camera distortion effects on the images that are typically calibrated

in flight are not included in the simulations. The observation model described

in section 1.1 is used for both the truth and filter measurement models, and

the measurement errors are described in the section titled “Monte Carlo Error

Parameters”.
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It is assumed that initial estimates for the states and a (potentially

coarse) shape model have been previously determined in the first approach

phase using center of brightness observations, and an initial set of landmarks

on the surface are identified a priori. The landmark generation and identifica-

tion problem [8] is not treated in this chapter (see Chapter 5), but the positions

of the landmarks contain some initial error that is estimated using the SLAM

algorithm. While it is possible to have misidentified landmarks, in practice the

misidentification of landmarks has not proven problematic for optical naviga-

tion team members at JPL due to the examination of the postfit measurement

residuals and subsequent removal of outliers.3 Should mis-identification of

landmarks become an issue in future autonomous navigation systems, current

research in the field of multi-target tracking could prove useful [57].

A triaxial ellipsoid is used for the small body shape: while not as rep-

resentative as a full polyhedron shape model, it is sufficient for the evaluation

of the navigation algorithms. Night shading is implemented in the current

analysis, but the small body characterization trajectories stay primarily be-

tween the Sun and the small body, so landmarks remain visible throughout

the simulation.

4.3 Estimation Filter Architecture

A standard discrete EKF, as described by Tapley, et. al. [121], is

employed. The following parameters are estimated: the spacecraft position,

3Email Communication with Nickolaos Mastrodemos (JPL), July 24, 2015
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velocity, and optionally the attitude (for further correction of onboard pro-

vided attitude estimates); the small body orientation, angular velocity, GM,

and diagonal moments of inertia; and body-fixed locations of surface land-

marks considered for navigation. The CM offset and off-diagonal moments of

inertia of the small body are not estimated due to lack of observability, but

errors are added for these values, as described in Table 4.7 below. Note that

in this implementation, the size of the state vector is constant and does not

change depending on how many landmarks are visible. These states are simul-

taneously estimated directly from the landmark observations, and all partial

derivatives for the EKF formulation are computed using a standard numerical

finite difference approach.

The spacecraft attitude at each picture time is provided independently

from a “black-box” ADS consisting of star cameras, gyros, and an attitude

estimation filter. It is assumed that the spacecraft is commanded to point its

camera at the origin of the body-fixed frame of the small body using onboard

position and attitude knowledge at every picture time using control moment

gyroscopes (CMG), reaction wheels, or thrusters. Thus the spacecraft atti-

tude is not dynamically propagated, nor are the attitude maneuvers directly

simulated. This simplification has been used successfully in previous studies

of optical navigation about small bodies [19].

Assuming that the attitude control error is low enough that a suffi-

cient number of landmarks are in the camera FOV, the more important aspect

for navigation analysis is the attitude knowledge error of the ADS. The atti-

tude knowledge error is simulated using expected attitude commanding and
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knowledge accuracy from modern onboard attitude determination and control

systems [71, 76, 1]. It is assumed that stars are available to the star camera

in the earlier portions of this mission phase (i.e. the small body does not fill

or nearly fill the star camera FOV). Later in the characterization phase only

landmarks and gyroscope measurements are available for attitude determina-

tion, but the attitude knowledge error remains low based on previous flight

experience at small bodies [81].

When only landmarks are available, or if for some reason the indepen-

dent ADS becomes degraded, the attitude of the spacecraft can be further

corrected using the landmark measurements. With nominal performance of

the ADS, this correction is typically not needed (and is not included in the

nominal results shown below), but can provide a small improvement in the

overall performance of the filter. Estimation updates of the spacecraft atti-

tude are isolated to each photo time, and thus no process noise is employed for

attitude, and the same a priori covariance is used at each photo time. While

an isolated improvement to the spacecraft attitude at one photo time will not

improve attitude estimates at other photo times, any improvements made to

the other states will carry forward. More precisely it is the camera pointing

that is further corrected from the initial ADS estimate, but in this analysis

the navigation camera is assumed to be hard-mounted to the spacecraft bus

(as has been the case for recent missions), and thus all references to spacecraft

attitude estimates are equivalent to camera pointing estimates.

109



4.4 Monte Carlo Simulation Design

Monte Carlo simulations are used to obtain a statistical assessment of

the filter accuracy. Two primary methods to distribute Monte Carlo initial

state errors are: 1) adding initial state errors to the nominal state to obtain

numerous different truth trajectories, or 2) adding initial state errors to the

truth state to obtain different initial nominal states. The advantage of the first

method is that it emulates what occurs in flight operations: the truth state is

never known (and downstream truth trajectories are dependent on upstream

filter estimates due to maneuver planning), so Monte Carlo truths must be

distributed about the current best estimate of the state. The advantage of

the second method is having a single truth trajectory and set of observations,

which can simplify comparison studies. The single truth trajectory method can

also eliminate the need to introduce initial state error with a more complex

model than a standard Gaussian distribution (i.e. to avoid situations where

the truth trajectory intersects the small body).

For this chapter, the second option is chosen: the nominal states are

distributed about the truth using the sampled error values. This distribution

method includes the spacecraft attitude: the nominal attitude at each picture

time is computed by “adding” (in the rotational sense) the attitude knowledge

error to the truth pointing vector. As a result, all truth landmark observations

are identical between Monte Carlo trials, and all trials are subject to the same

environment.
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4.5 Maneuvers

Impulsive maneuvers are performed in the simulation as part of the

small body characterization mission phase. In general, maneuver execution

error (i.e. the difference between the planned maneuver and true executed ma-

neuver) is critical to consider when maneuvering a spacecraft. However, when

evaluating navigation and estimation algorithms (as is done in this chapter)

the most important error to consider is the knowledge error: the difference

between the actual maneuver and the estimated maneuver. As long as the ex-

ecution error is not so great that the surface landmarks are no longer visible, it

is assumed that execution error should not significantly affect the estimation

results.

As a result, no execution error is computed, and the waypoints are not

re-targeted for each nominal Monte Carlo trial. The truth trajectory remains

constant for all Monte Carlo trials, and all truth delta-v’s are precomputed for

each truth scenario using a standard differential correction method to target

the trajectory way-points. For each Monte Carlo trial, maneuver knowledge

error is added to the truth delta-v to obtain the nominal delta-v (which is

added to the propagated nominal state at the maneuver time), as shown in

Figure 4.1. This approach is commonly known as the separation principle: the

observer and controller can be designed and implemented separately [79, 30,

20]. While this separation principle is provably true only for linear systems, it

has been successfully employed for nonlinear systems such as navigation and

mission design analysis, including NASA’s Magnetosphere Multiscale (MMS)

mission [94].
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Figure 4.1: Maneuvers with Knowledge Error

The differences between the truth maneuver and the planned maneuvers

that would result if each of the 1000 Monte Carlo trials re-targeted waypoint

2 (employing the same differential corrector used for the precomputed truth

delta-v) are shown in Figure 4.2 as projected scatter plots. Note that the scat-

ter plot dispersions are near Gaussian. Thus from a statistical point of view,

one can make the (admittedly liberal) claim that these “re-target differences”

are equivalent to sampled Gaussian execution errors. Therefore, not including

execution error and not re-targeting for each Monte Carlo are justified if these

two non-actions are performed as a pair. It is emphasized that this approach

allows for fast Monte Carlo simulations, as each trial run avoids any maneuver

re-targeting and recomputing truth trajectories.

The maneuver knowledge error is computed by sampling Gaussian ran-

dom variables with conservative user-provided standard deviations, as shown

in subsection “Monte Carlo Error Parameters”. Typical maneuver execution
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Figure 4.2: Truth Maneuver and Re-targeted Maneuvers from Nominal Monte
Carlo Trials, 2D projections

error parameters are used for the knowledge error parameters, which adds an-

other layer of conservatism: usually the post-fit maneuver knowledge error is

far less than the maneuver execution error (unless the maneuver estimation

process proves totally ineffective). To account for the increase in uncertainty

of the velocity at the maneuver time in the estimation filter, the velocity co-

variance is inflated by the same standard deviation of the random variable

used to compute the knowledge error. If the truth scenario is modified, the

truth delta-v values are recomputed. As expected, the delta-v values have low

sensitivity to changes in the truth small body spin state.
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4.6 Dynamical Models

The truth spacecraft dynamical trajectory model includes central body

acceleration, perturbations from a spherical harmonic gravity field, solar ra-

diation pressure (SRP), and the third body perturbation (TBP) of the Sun.

Accelerations from other bodies are negligible and not included. The nominal

spacecraft dynamical trajectory model includes the same accelerations except

for the spherical harmonic gravity perturbations, which are completely ne-

glected: at this point in a small body mission, no reliable gravity harmonic

coefficient values are available (nor are they observable). Some estimates (with

high uncertainty) of the lower order coefficients may be available from shape

models (which assume a constant density profile) [133, 134], but these are

unnecessary for navigation at the high altitude characterization phase. The

gravity field can be further refined once a spin state is established and lower

orbits are achieved.

A fourth degree and order spherical harmonic gravity model from the

asteroid Eros is used for the truth model, though the GM and reference

radius are altered to the current best estimate of Comet 67P/Churyumov–

Gerasimenko. The gravity coefficients of Eros are used to emulate the level

of perturbations expected at a small body. Table 4.1 lists the magnitudes of

the forces acting on the spacecraft when it is furthest and closest to the small

body during the simulation. At the maximum position radius the gravity per-

turbation is weaker than the SRP and TBP forces. At the minimum radius

the gravity perturbation is twice as strong as the TBP force, but still an or-

114



der of magnitude weaker than the SRP. Thus the SRP is the most important

spacecraft perturbation force to model.

Table 4.1: Forces On Spacecraft [N]

Max Radius (115 km) Min Radius (54 km)

Central Body 7.176 × 10-5 3.255 × 10-4

Gravity Pert 1.022 × 10-8 2.424 × 10-7

SRP 2.325 × 10-6 2.325 × 10-6

TBP 2.186 × 10-7 1.151 × 10-7

Figure 4.3 illustrates the reference frames used and the other quantities

of interest. Note that I and BF indicate the inertial and small-body-fixed

reference frames, respectively. The spacecraft position rSC−I is defined in the

inertial frame, while the center of mass location rCM−BF and the inertia values

(IXX−BF , IY Y−BF , and IZZ−BF ) relative to that center of mass location are

defined in the body-fixed frame. Note that all forces acting on the spacecraft

are computed using the spacecraft location relative to the small body CM (for

both the nominal and truth model, though the nominal value has some error

which is not estimated or corrected). The CM-relative spacecraft position

vector is determined using the CM offset value, rotated from the body-fixed

frame to the inertial frame:

rSC−CM = rSC−I −Rb2i rCM−BF (4.2)

The small body rotation dynamical model is a numerical integration

of Euler’s equations for rigid body dynamics. While torque free motion has
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Body 

Figure 4.3: Reference Frame Diagram

closed form solutions (in terms of elliptic integrals) [110], numerical integra-

tion is performed in order to allow torques from YORP effects, out-gassing

effects, and other celestial bodies. Because these torques are expected to be

negligible over the time span between measurements [110], they are not in-

cluded in these simulations. However they can be added as needed for longer

propagation times. The small body angular velocity and moments of inertia

are expressed within the simulation in the body-fixed frame so that the iner-

tia tensor is constant over the integration time spans. The initial body-fixed

angular velocity vector is converted from initial euler angle rates via the Euler

angle rates matrix, as described by Diebel [41]. The moments of inertia, which

are defined relative to the small body CM and in the small-body-fixed frame,

are modified only at the measurement updates.
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MRP are used to represent the orientation of the small body, and the

time derivative of the MRP representation required for the dynamical model

is provided in Appendix A. The user-provided initial 3-1-3 Euler angle values

are converted to MRP at the start of the simulation, and the output MRP

truth and error values are converted to Euler angles for a more intuitive rep-

resentation.

The spacecraft and small body dynamics are propagated via numerical

integration between picture times using the fixed-step fourth-order Runge-

Kutta (RK4) method. RK4 is used to emulate expected onboard integration

capabilities [78]. The covariance is propagated to the same times, also us-

ing fixed step propagation, by the standard method of integrating the state

transition matrix via numerical integration. A step size of approximately one

minute is used for the propagation intervals between the four photos taken

five minutes apart (as described below in Table 4.2) and a step size of approx-

imately thirty minutes is used for the four hour intervals between the sets of

four photos.

4.7 Simulation Scenario

The scenario used to evaluate the SLAM algorithm is based on the

comet characterization phase of the Rosetta mission [46, 71], when the space-

craft starts at approximately 115 kilometers from the body, and flies in pyramid-

like trajectories between the comet and the Sun [138]. Only a small amount

of delta-v is needed to shift between hyperbolic trajectories at these high al-

titudes, allowing improved viewing geometries for the small body characteri-

117



zation phase. Eight arcs of the pyramid trajectory are simulated, which are

displayed in the three dimensional plot and the set of two dimensional pro-

jections in Figure 4.4. The arcs are shown in a Sun-Fixed frame only for

visualization, whereas the dynamics are integrated in the inertial frame.
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Figure 4.4: Truth Trajectory

Two primary truth small body tumbling scenarios are investigated in

this chapter: minimal tumbling (i.e. primarily principal axis rotation with

small amounts of precession and nutation), and nominal tumbling (i.e. the

angular velocity is not closely aligned with the small body’s maximum principal

axis of rotation). The minimal tumbling scenario has initial Euler angle rates

of 10 degrees per day for the Right Ascension (RA), 20 degrees per day for the

declination (Dec), and 696 degrees per day for the Prime Meridian (PM), or
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“twist”, which are converted to body-fixed angular velocity at the beginning

of the simulation. The nominal tumbling has initial Euler angle rates of 450,

450, and 350 degrees per day for the RA, Dec, and PM, respectively. The

truth small body orientation and body-fixed angular velocity components for

both scenarios are displayed in Figures 4.5 and 4.6.

0 100 200 300 400 500 600 700
−5

0

5
Spin State Truth Components

R
A

0 100 200 300 400 500 600 700
0

5

10

D
e
c

0 100 200 300 400 500 600 700
0

1

2
x 10

4

P
M

Time from epoch [hours]

(a) Orientation [deg],
Ri2b = R3(PM)R1(π2 −Dec)R3(RA)

0 200 400 600
−50

0

50
Small Body Angular Velocity Truth Components

X

0 200 400 600
−50

0

50

Y

0 200 400 600
696

696.5

697

Z

Time from epoch [hours]

(b) Angular Velocity [deg/day]

Figure 4.5: Minimal Tumbling Small Body Spin State Over Time

Thirty predetermined and randomly located landmarks are provided

for navigation from the initial approach phase. This number of landmarks is

consistent with the number that are expected at this mission stage if manual

methods are used [27], with greater amounts likely if computer vision tech-

niques are used. Including more than thirty landmarks in the simulation does

not significantly enhance the estimation of the small body spin state in this

scenario, and computation increases significantly with increasing state size.

Typically a coarse estimate of the spin state of the small body is needed

before the process of computing stereophotoclinometry (SPC) landmarks can
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Figure 4.6: Nominal Tumbling Small Body Spin State Over Time

be started, which has not been a problem for bodies in principal axis rotation

[18]. For a body that is strongly tumbling, mission navigators may need to

manually determine and locate natural feature landmarks, or use standard

computer vision techniques such as SIFT or SURF. As the small body spin

state is better determined, SPC landmarks can be generated and these can

be used instead of manual or other less accurate computer vision options [44].

Because manually selected natural feature landmarks have greater initial posi-

tion error and possibly greater measurement error than the SPC method, the

spin state estimation performance is evaluated for a range of initial landmark

position errors and measurement errors, including errors well above expected

worst-case values for manually-selected landmarks.

Various timing parameters of the simulation are listed in Table 4.2, in-

cluding the maneuver times. The truth maneuvers, which range in magnitude
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from 0.87 m/s to 0.58 m/s, are displayed in Table 4.3 below. See Tables 4.4

and 4.5 for small body and spacecraft parameters, respectively.

Table 4.2: Simulation Timing

Simulation Parameter Values
Epoch Time 06-Aug-2014 12:00:00.00
End Time 03-Sep-2014 06:40:00.00

Maneuver #1 10-Aug-2014 11:33:20.00
Maneuver #2 13-Aug-2014 10:40:00.00
Maneuver #3 17-Aug-2014 10:13:20.00
Maneuver #4 20-Aug-2014 09:20:00.00
Maneuver #5 24-Aug-2014 08:53:20.00
Maneuver #6 27-Aug-2014 08:00:00.00
Maneuver #7 31-Aug-2014 07:33:20.00

Minimum Time Before
First Update 1 minute after epoch

Measurement Timing 4 photos 5 minutes apart, every 4 hours

Table 4.3: Simulation Maneuvers

Maneuver Count Delta-V Vector [km/s]
#1 [-1.5511×10-4, -4.9783×10-4, 6.9638×10-4]
#2 [-4.8853×10-4, 1.6001×10-4, -6.9008×10-4]
#3 [7.1944×10-4, 3.8504×10-4, -1.63590×10-5]
#4 [-2.9441×10-4, -4.4434×10-4, 4.7151×10-4]
#5 [-3.4777×10-4, -2.7907×10-6, -4.6962×10-4]
#6 [5.2675×10-4, 1.7877×10-4, 4.8241×10-6]
#7 [-8.6991×10-5, -3.4001×10-4, 4.3964×10-4]

4.7.1 Filter Parameters

The filter parameters used in the EKF are listed in Table 4.6. The

measurement noise covariance 1-σ values are slightly higher than the mea-

surement error 1-σ values of 0.5 pixels, as this measurement underweighting
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Table 4.4: Small Body Properties

Simulation Parameter Truth Values
Initial Pole Right Ascension 3 deg

Initial Pole Right Ascension Rate 450 deg/day
Initial Pole Declination 4 deg

Initial Pole Declination Rate 450 deg/day
Longitude of the Prime Meridian at Epoch 5 deg

Rotation Rate 350 deg/day
GM 6.6692x10-7 km3/s2

CM Offset X, Y, Z [0.01, 0.02, 0.03] km
Reference Radius for Gravitational Harmonics 2.375 km

Max Radius 2.375 km
Intermediate Radius 1.885 km

Min Radius 1.470 km
Min Moment of Inertia (Ixx) 1.38176x1013 km2-kg

Intermediate Moment of Inertia (Iyy) 1.88645x1013 km2-kg
Max Moment of Inertia (Izz) 2.22309x1013 km2-kg

Off-Diagonal Moments (Ixy, Ixz, Iyz) -9.99305x108 km2-kg
Number of Landmarks on surface 30

Degree and Order of Gravity Harmonics 4 (Eros Values Used)

Table 4.5: Spacecraft Properties

Simulation Parameter Truth Values
Mass 1422 kg
Area 6 m2

Reflectivity Coefficient 1.1
Initial Position (Inertial) [-47.417, -98.777, -34.924] km
Initial Velocity (Inertial) [2.8411x10-4, 2.3799x10-4, -2.0866x10-4] km/s

consistently produces slightly better results. It has been shown in the litera-

ture that measurement underweighting often produces lower navigation errors

[145, 12]. Higher measurement noise covariance values also compensate for the
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spacecraft attitude errors applied at each photo time (described in Table 4.7),

which are not estimated nominally.

To prevent the position uncertainty from locking down too quickly,

which can cause issues with the estimation of other parameters, a small amount

of additional process noise (100 square meters) is added to the prefit position

uncertainty at the second picture time. This “damping” of the covariance re-

duction allows a smooth transition from the larger initial corrections of the

state estimates to the steady state behavior. The “Velocity Covariance Infla-

tion For Maneuvers” value listed in Table 4.6 is added directly to each of the

spacecraft velocity covariance diagonal values after the covariance matrix is

mapped from the previous estimation time to the maneuver time.

The process noise for the spacecraft position and velocity is computed

using the standard time-difference approach described by equation 3.6 (and

provided in Appendix F of Tapley [121]). The tuning parameter q for this

process noise model is provided in Table 4.6. The process noise values for the

small body orientation (which does not have units, because the MRP repre-

sentation is unitless) and angular velocity are added directly to the mapped

covariance diagonal terms at the end of the longer propagation intervals be-

tween the four photos grouped together. No process noise is used for the small

body GM or moments of inertia.

4.7.2 Monte Carlo Error Parameters

The 1-σ simulation error parameters sampled in the Monte Carlo simu-

lations are listed in Table 4.7. The errors for the spacecraft position and veloc-
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Table 4.6: Filter Parameters

Simulation Parameter Values
Initial Filter Position Covariance

(1-σ) [1, 1, 10] km

Initial Filter Velocity Covariance
(1-σ)

[1x10-5, 1x10-5, 1x10-5]
km/s

Initial Filter Small Body Spin State
Angles Covariance (1-σ) [5, 5, 5] deg

Initial Filter Small Body Spin State
Angular Velocity Covariance (1-σ) [10, 10, 10] deg/day

Initial Filter Small Body GM
Covariance (1-σ) 1.4x10-7 km3/s2

Initial Filter Small Body Diagonal
Moments of Inertia Covariance (1-σ) [3x1011, 3x1011, 3x1011] km2-kg

Initial Filter Small Body Landmark
Position Covariance (1-σ) [0.01, 0.01, 0.01] km

Measurement Noise Covariance
(1-σ) [2, 2] pixels

Process Noise q for Position and
Velocity

1x10-16 km2/s3

Process Noise for Spin State
Orientation (MRP) 1x10-6

Process Noise for Spin State
Angular Velocity

1x10-12 (deg/day)2

Velocity Covariance Inflation For
Maneuvers

4x10-10 (km/s)2

ity are provided in the View 2 frame: the first axis is along the velocity vector,

the second axis is perpendicular to the orbital plane, and the third axis is per-

pendicular to the first and second, in general pointing approximately zenith.

This frame is chosen based on how missions have historically broken down the

expected navigation performance errors. The initial filter covariance values for

the position and velocity are given in the same reference frame. The initial
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spacecraft state errors are approximately equal to those expected from opti-

cal navigation using center of brightness measurements in the approach phase

(which occurs immediately prior to the small body characterization phase)

[18, 81]. Center of brightness measurements are not significantly dependent

on the small body spin state or landmarks (which have not yet been obtained).

The initial small body orientation and spin rate errors are provided

in Euler angles and Euler angle rates, which are converted to Modified Ro-

drigues Parameters errors and body-fixed angular velocity errors using first

order partial derivative matrices. The same conversion process is performed

for the initial filter covariance values. Modern image processing capabilities

can generate landmark center values at sub-pixel precision, and thus 0.5 pixels

is used for the measurement error covariance.

The 1-σ maneuver knowledge error parameters are defined in terms

of magnitude and direction. The truth maneuver is converted from Cartesian

coordinates to spherical coordinates: magnitude, RA and Dec. The magnitude

1-σ error value is 1% of the truth maneuver magnitude. No fixed magnitude

error is assumed. The direction error values are one degree (1-σ) for both

the RA and Dec. After knowledge errors are added to the truth spherical

coordinates, the values are converted to Cartesian coordinates to compute the

nominal “estimated” maneuver. The declination value for each maneuver is

checked to ensure it is not close to the singularity. These knowledge error

values are considered strongly conservative even for execution error, which

is likely to be far greater than knowledge error. A less conservative model

would involve using knowledge errors previously determined for the mission,
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Table 4.7: 1-σ Monte Carlo Error Parameters

Simulation Parameter 1-σ Error Values
Spacecraft Mass 20 kg
Spacecraft Area 1 m2

Spacecraft Initial Position [1, 1, 10] km
Spacecraft Initial Velocity [1x10-5,1x10-5,1x10-5] km/s

Spacecraft Attitude (at each photo) [0.005, 0.005, 0.005] deg
Small Body Initial Orientation [5, 5, 5] deg

Small Body Initial Angular
Velocity

[10, 10, 10] deg/day

Small Body Initial GM 1.4x10-7 km3/s2

Small Body Initial CM offset [0.01, 0.01, 0.01] km
Small Body Initial Diagonal

Moments of Inertia [3x1011, 3x1011, 3x1011] km2-kg

Small Body Initial Off-Diagonal
Moments of Inertia [1x109, 1x109, 1x109] km2-kg

Small Body Initial Landmark
Locations

[0.01, 0.01, 0.01] km

Observation [0.5, 0.5] pixel
Maneuver Magnitude 1%
Maneuver Direction 1◦ Right Ascension, 1◦ Declination

and would likely use a more complete Gates maneuver error model, which

involves direct and proportional terms for the magnitude and direction errors

[45].

4.8 Results

A Monte Carlo analysis using one thousand trials is employed to verify

the performance of the SLAM estimation algorithm for both truth tumbling

scenarios. The number of Monte Carlo trials was increased until the ensemble

error statistics converged, which are shown in the captions of the figures below.
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The minimal tumbling simulation takes approximately 2.27 CPU hours, with

an average of approximately 8.2 CPU seconds per trial. The nominal tumbling

simulation takes approximately 5.48 CPU hours, for an average of 19.7 CPU

seconds per trial. The nominal scenario is clearly more computationally inten-

sive, due to the propagation required for the complex rotation of the body and

the more challenging estimation of the body. These are the CPU run times of

sequentially run simulations on a quad-core 3.60 GHz Intel Xeon CPU, with

all code written in 1995 and 2003 Fortran and compiled using standard release

mode settings in 2011 Intel Visual Fortran.

Figures 4.7 through 4.9 display the post-fit state errors and covariance

of the nominal tumbling Monte Carlo simulation. The position and velocity

initial errors rapidly converge to near steady state levels within two to three

picture times, with order of magnitude reductions in the error within one to

two arcs of the comet characterization trajectory. The error introduced to

the velocity at each maneuver time is quickly reduced by more than an order

of magnitude after the maneuver, and the added error does not significantly

disrupt the estimation of the other states. The small body orientation and

angular velocity error also rapidly converge, with order of magnitude error

reductions within a single arc of the eight hyperbolic arc trajectory. The

GM takes longer to converge, but does prove observable. When either the

small body CM offset or off-diagonal moments of inertia are included in the

estimation state, there is no significant change in error or covariance of any of

the states, confirming these quantities are not significantly observable.
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(a) Position
RMS: 0.4034, Max: 28.6948,

Steady State: 0.0815 km

(b) Velocity
RMS: 4.5098E-6, Max: 6.2867E-5,

Steady State: 4.9809E-7 km/s

Figure 4.7: Spacecraft Position and Velocity Postfit Error, Nominal Scenario

The post-fit state error plots are very similar for the minimal tum-

bling scenario. One exception are the diagonal moments of inertia, which are

displayed in Figure 4.9. The scenario with greater amounts of tumbling has

greater observability of the primary moments of inertia, and thus faster ini-

tial error reduction. There is not significant observability of the off-diagonal

moments of inertia for either scenario.

The number of visible landmarks at each photo time shown in Figure

4.10 for the nominal tumbling scenario is identical for all trials (as described

in section “Monte Carlo Simulation Design” above). The landmark body-fixed

position errors for a single trial are representative of the performance observed

in the other trials, and converge rapidly.

Overall, the results for both scenarios show strong convergence and

observability of all estimated states except for the diagonal moments of iner-
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(a) Spin State Attitude
RMS: 0.3810, Max: 21.1866,

Steady State: 0.0870 deg

(b) Spin State Angular Velocity
RMS: 1.8713, Max: 42.2692,
Steady State: 0.6625 deg/day

(c) Small Body GM
RMS: 6.6139E-8, Max: 4.4765E-7

km3/s2

Figure 4.8: Small Body Spin State and GM Postfit Errors, Nominal Scenario

tia, which exhibit weaker (though non-negligible) observability as expected.

Most importantly, the small body spin state values quickly converge to the

truth values, for both tumbling body scenarios. The covariance values con-

servatively well represent the uncertainty in the state, as the error plots are
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(a) Minimal Tumbling Diagonal
Moments of Inertia

RMS: 3.1789E+11, Max: 1.1688E+12
km2-kg

(b) Nominal Tumbling Diagonal
Moments of Inertia

RMS: 2.9828E+11, Max: 1.1663E+12
km2-kg

Figure 4.9: Small Body Diagonal Moment of Inertia Postfit Errors, Nominal
And Minimal Tumbling Scenarios

(a) Number of Visible Landmarks, All
Trials

(b) Landmark Position Postfit Errors,
Single Trial

Figure 4.10: Landmarks

entirely contained within the 3-σ covariance magnitudes. The postfit residuals

are scattered evenly about zero, indicating no systematic biases, with an RMS
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of approximately 0.78 pixels. This RMS value is consistent with the Rosetta

navigation results presented by Bhaskaran [18]. Using 2 pixels (1-σ) for the

measurement noise covariance produces slightly better results than using 0.5

pixels (1-σ) to match the 0.5 pixels observation error, but is not critical for

successful convergence of the state parameters.

Based on the error statistics displayed in Table 4.8, the estimated pa-

rameters most sensitive to changes in the level of truth tumbling are the spin

state angular velocity and the diagonal moments of inertia (and to a limited

extent the spacecraft velocity). These results are logical: greater non-principal

axis rotation rates make estimation of the angular velocity more challenging,

and provide more observability of the moments of inertia.

Table 4.8: Ensemble Error RMS Values For Two Tumbling Scenarios

Minimal Tumbling Nominal Tumbling
(10, 20, 696)* (450, 450, 350)*

deg/day deg/day

Position [km] 0.4039 0.4034
Velocity [km/s] 4.3823 × 10-6 4.5098 × 10-6

Spin State
Orientation [deg] 0.3822 0.3810

Spin State Angular
Velocity [deg/day] 1.6552 1.8713

Small Body GM [km3/s2] 6.6865 × 10-8 6.6139 × 10-8

Diagonal Moments
of Inertia [km2-kg] 3.1789 × 1011 2.9828 × 1011

* Initial Euler angle rates (RA, Dec, PM), which are converted to body-fixed
angular velocity
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The attitude of the spacecraft can be further corrected at each photo

time by adding it to the estimation state and using the same non-zero a priori

attitude covariance at every photo time. A priori covariance values are chosen

to match the Monte Carlo error distribution provided in Table 2.5, and the

measurement noise covariance is reduced from 2 pixels to 1 pixel (removing

the inflation to better account for non-estimated attitude errors). Errors in

the attitude and other states are improved by further correcting the attitude,

as seen in Table 4.9. In addition to attitude, velocity and GM errors are

significantly improved, while other states are only very slightly improved or

not affected.
Table 4.9: Estimation Improvements with Spacecraft Attitude Estimation En-
abled

Minimal Tumbling Nominal Tumbling
Scenario Scenario

Position 0.20% 0.22%
Velocity 16.24% 19.13%
Attitude 19.13% 19.13%

Spin State Orientation 0.55% 0.55%
Spin State Angular

Velocity 1.66% 1.64%

Small Body GM 4.72% 4.84%
Diagonal Moments

of Inertia
2.45% -0.73%

4.8.1 Varying Initial Spin State Error

To investigate SLAM algorithm performance for different levels of initial

spin state error, the 1-σ nominal error and covariance values are determinis-

132



tically varied for all three components of the initial orientation and angular

velocity, and 100 nominal Monte Carlo trials are run for each level of initial er-

ror. The “steady state” (i.e. the time period following the first two hyperbolic

arcs) error RMS and number of diverged trials for both tumbling scenarios are

shown in Figures 4.11 and 4.12.
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Figure 4.11: Steady State Error RMS of Small Body Orientation and
Angular Velocity, and Number of Diverged Trials, for Different Initial Small

Body Spin State 1-σ Errors, Minimal Truth Tumbling Scenario

For the minimal truth tumbling scenario, the increase in the orientation

steady state error RMS is very gradual until it reaches 45 degrees 1-σ error, at

which point the error RMS spikes (Figure 4.11a). The number of trials that

diverge (out of 100) is zero below 25 degrees of initial 1-σ orientation error,

and increases significantly above that level of initial error. The error RMS

plotted is for non-diverged trials only, so as more of the highest error trials are

excluded, the error RMS of the remaining trials can improve. An example of

this affect is the drop in error RMS at 50 degrees 1-σ initial orientation error.
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Figure 4.12: Steady State Error RMS of Small Body Orientation and
Angular Velocity, and Number of Diverged Trials, for Different Initial Small

Body Spin State 1-σ Errors, Nominal Truth Tumbling Scenario

The angular velocity steady state error RMS and number of diverged

trials are low for the range of initial 1-σ angular velocity errors evaluated.

Initial error greater than this range exceeds maximum angular velocity mag-

nitudes for many small bodies, beyond which they start to break apart. Thus,

the initial values for angular velocity of the body can have high uncertainty

(with errors greater in magnitude than the angular velocity values themselves)

and the EKF-SLAM filter will still converge on the correct angular velocity.

The overall effectiveness of the filter is significantly less sensitive to increases

in the initial small body angular velocity error than increases in the small body

attitude error.
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4.8.2 Varying Initial Landmark Position Error

The SLAM algorithm performance is also evaluated for a range of initial

landmark position errors. When the process of estimating the small body

spin state begins, the landmarks may be manually identified and assigned

body-fixed positions [44, 27], which will likely have significantly larger initial

body-fixed position errors than those landmarks later constructed using the

SPC method (which requires a strong estimate of the spin state). Thus, it is

important to characterize how the spin state can be effectively estimated in

the presence of larger initial landmark position errors.

The 1-σ nominal initial landmark position error and covariance values

are deterministically increased by 10 meters from 0 meters to 110 meters for

all three components, and 100 nominal Monte Carlo trials are run for each

level of initial error. The high end of this range is based on minimum levels of

surface knowledge described in Castellini [27]. The maximum 1-σ RSS initial

error is
√

1102 + 1102 + 1102 ≈ 191 meters (∼ 10% of the average body radius).

Figure 4.13 reveals that spin state parameters are successfully estimated for the

entire range of initial landmark position error. The landmark error smoothly

converges for all initial landmark position errors evaluated, and there are no

diverged runs. The 1-σ initial landmark errors must be increased to somewhere

between 50% and 100% of the body minimum radius (1.470 km) for any runs

to diverge, well beyond expected initial landmark position error using manual

methods [27].
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Figure 4.13: Error RMS of Small Body Orientation and Angular Velocity,
and Number of Diverged Trials, for Different Initial Landmark Position 1-σ

Errors, Nominal Truth Tumbling Scenario

4.8.3 Varying Landmark Measurement Error

To determine how spin state estimation degrades with increasing land-

mark measurement error, the 1-σ landmark measurement errors are determin-

istically increased by 0.5 pixels from 0 pixels to 5.5 pixels for both x and y

components, and 100 nominal Monte Carlo trials are run for each level of

measurement error. The 1-σ measurement covariance values are set 0.5 pixels

greater than the 1-σ measurement error values, to consistently underweight

the measurements for each scenario. The resulting “steady state” small body

orientation and angular velocity error RMS in Figure 4.14 reveals no drastic

degradation of the spin state estimation for any landmark measurement error

evaluated. The 1-σ landmark measurement errors must be increased to 10% to

20% of the sensor array size (1024 pixels) for any runs to diverge, well beyond

worst-case expected measurement error using manual methods.
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Figure 4.14: Error RMS of Small Body Orientation and Angular Velocity,
and Number of Diverged Trials, for Different Landmark Measurement 1-σ

Errors, Nominal Truth Tumbling Scenario
4.8.4 Varying Attitude Error

Spacecraft attitude errors can also affect the performance of the spin

state estimation. Further correction of the attitude estimates output by the

“black-box” ADS are enabled, and the ADS attitude errors are increased deter-

ministically (corresponding to degraded performance). The steady state small

body orientation and angular velocity errors increase smoothly for increasing

spacecraft attitude error (which is applied at each picture time), and no sim-

ulations evaluated in the range shown in Figure 4.15 have any diverged runs.

Estimation of the spin state begins to break down between 1 and 2 degrees of

1-σ attitude error applied at each picture time, which is far greater than levels

of error typically present in modern spacecraft attitude determination systems.

Errors as large as 1 to 2 degrees 1-σ also begin to approach and exceed the 3

to 5 degree rotation that will place the small body entirely outside of the field

of view.
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These errors are applied at every picture time, whereas it is likely the

ADS will converge on much lower error noise levels, even if starting from

larger initial attitude error. The attitude error added in this simulation acts

to represent the steady state attitude error, versus initial attitude error, which

might be larger if the attitude determination system experiences a temporary

disruption. In the event of a total attitude determination system failure, it is

likely that the filter will need to iterate further on the attitude at each picture

time. Investigation of heavily degraded or failed external attitude estimation

capabilities is planned for future work.
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Figure 4.15: Error RMS of Small Body Orientation and Angular Velocity,
and Number of Diverged Trials, for Different Attitude 1-σ Errors, Nominal

Truth Tumbling Scenario

4.8.5 Varying Initial Spacecraft Position Error

Initial spacecraft position errors up to 50 kilometers 1-σ appear to

provide consistent steady state accuracy for the estimation of the spin state,
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beyond which the number of diverged trials becomes non-zero and the error

RMS increases significantly (Figure 4.16). This level of initial spacecraft po-

sition error relative to the small body is significantly larger than is expected

from center of brightness optical navigation [18, 81].
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Figure 4.16: Error RMS of Small Body Orientation and Angular Velocity,
and Number of Diverged Trials, for Different Initial Spacecraft Position 1-σ

Errors, Nominal Truth Tumbling Scenario

4.8.6 Varying Truth Spin State, GM, and CM Offset

The small body spin state and other states are estimated for 1000 dif-

ferent truth small bodies, which are generated by varying the truth small body

initial angular velocity, GM, and CM offset using uniform random variables

as described in Table 4.10. The limits of these uniform random variables are

based on the profiles of the small bodies throughout the solar system that are

believed to tumble [110]. For each truth scenario, ten nominal Monte Carlo

trials are executed. The error RMS of these ten nominal Monte Carlo trials

139



Table 4.10: Truth Variation Parameters

Truth Parameter
Uniform Random Variable

Range
Small Body Initial Angular
Velocity (each component) [-700, 700] deg/day

Small Body GM [3.0x10-7, 5.6x10-6] km3/s2

Small Body CM offset [-0.1, 0.1] km

for each truth trial is displayed via histograms in Figures 4.17 and 4.18, for

the position, velocity, small body orientation, and angular velocity.

The histogram plots exhibit near-Gaussian distributions, with a few

minor outliers occurring for the spacecraft position and small body angular

velocity (which do not appear to be correlated with each other). Based on

these results, the SLAM algorithm appears to have no problems estimating the

states (besides those states that are established to have lower observability)

for the range of mass and spin state values expected for tumbling small bodies

[110].

4.8.7 Observability Analysis

Besides adding or removing a particular quantity to the estimation

state to determine the impact it has on the results (which was used to detect

the unobservability of the small body center of mass offset and off-diagonal

moments of inertia), there are other methods for investigating observability,

including an analysis of the Observability Matrix. An Observability Matrix

analysis can also provide the different levels of observability of the different

estimated states.
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Figure 4.17: Number of Truth Trials Within Ranges of Ensemble Spacecraft
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Figure 4.18: Number of Truth Trials Within Ranges of Ensemble Small Body
Orientation and Angular Velocity Error

Due to the size of the state when all landmarks are included, and the

number of measurement times in the simulations, a subset of the measurement

times and landmarks are considered. The first and second times following four

hour gaps in the photos are used to provide significantly different geometry,
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and only the two landmarks that are visible at both times are considered. The

state transition matrix (STM) Φ mapping across the four hour interval and

measurement partial derivatives matrix H for these two times and landmarks

are used to compute the observability matrix at each time index k:

Ok =



H
HΦ
HΦ2

...
HΦn−1


k

(4.3)

As described in Bryson [23], these separate observability matrices are combined

into the Stripped Observability Matrix:

O =
[
OT

1 OT
2 · · · OT

k

]T
(4.4)

In this analysis, only O1 and O2 are computed, but observability matrices at

additional times can easily be added (within computational limits). It should

be noted that by using the Stripped Observability Matrix, the continuous

system is approximated with a piecewise constant system. As a result, the

observability metric is not guaranteed to be the same. For a linear time-

varying system, the only guaranteed metric is the rank of the Observability

Gramian Matrix [82], as described in equation

M(t1, t2) =
∫ t2

t1
ΦT (τ, t1)HT (τ)H(τ)Φ(τ, t1)dτ (4.5)

However, in practice the Stripped Observability Matrix will typically provide

the same observability result as the Observability Gramian Matrix. Computa-

tion of the Observability Gramian Matrix in future analysis is recommended

in order to verify the results obtained using the Stripped Observability Matrix.
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The rank of the Stripped Observability Matrix is computed to deter-

mine the number of observable states, using a specified tolerance for the mag-

nitude of the singular values of each mode. However, more information about

the relative observability of each mode and the states that each mode includes

is available through analysis of the Singular Value Decomposition (SVD) of

the matrix. The SVD computes the eigenvalues and eigenvectors of OTO and

OOT , in order to compute

Op×n = Up×p Sp×n V
T
n×n (4.6)

with the columns of U equal to the eigenvectors ofOOT , the columns of V equal

to the eigenvectors OTO, and S a diagonal matrix containing the square roots

of the eigenvalues of OTO (or OOT ), also known as the “singular values”. The

eigenvectors of V , a dilution of precision measure of the observability matrix,

reveal the states that correspond to the different modes of the system. The

observability of these modes are dictated by the associated singular value.

The SVD of the stripped observability matrix for the two times de-

scribed above is computed, and the resulting singular values are shown in

Figure 4.19. To determine which states are significantly associated with each

mode for these singular values, the eigenvector components with magnitude

greater than 0.1 are used. The lowest singular values primarily correspond to

modes that encompass the small body diagonal moments of inertia, indicat-

ing that these states possess lower observability at the simulated spacecraft

altitudes (as expected based on results in Figure 4.9).
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Figure 4.19: Observability Modes

Another test of the system observability for a given level of measure-

ment noise is to run with process noise set to zero and observe if the resulting

covariance for each state approaches zero. With measurement noise unchanged

from the nominal scenario described above, the observability of the states is

consistent with the above results. When the measurement noise is sufficiently

reduced, all state covariance plots converge on zero.

A common concern regarding observability of small body landmarks

and spin state is the separability of landmark longitude and body rotation:

what if the nominal landmark locations are shifted in longitude by the same

angle (but opposite direction) as the nominal body rotation? For a perfect

sphere, such a shift would produce exactly the same computed measurements

as the truth measurements (assuming no other error sources), while possessing

significant error in the landmark locations and small body spin state. However,
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as the small body becomes increasingly non-spherical, and the angular velocity

of the body becomes less aligned with the principal axis of rotation (i.e. it

increasingly tumbles), the error in the landmark locations and small body

orientation becomes increasingly observable.

To demonstrate how the observability of an offset in landmark locations

and body rotation increases with non-spherical shapes and tumbling motion,

a five degree shift in the landmark locations and initial body rotation for three

different bodies and levels of tumbling are simulated. The three bodies are

defined in Table 4.11, where the “nominal” body matches what is used in the

above analysis and is described in Table 4.4. Note that the GM for all bodies

is identical to the nominal analysis above (6.6692x10-7 km3/s2), and thus the

moments of inertia have been computed assuming a triaxial ellipsoid shape

and the total GM.

Table 4.11: Different Small Bodies For Landmark Rotation Offset Analysis

Sphere Nominal Oblong

Max Radius 1.885 km 2.375 km 3.000 km
Med Radius 1.885 km 1.885 km 1.000 km
Min Radius 1.885 km 1.470 km 1.000 km
Inertia Ixx 1.42x1013 km2/kg 1.38x1013 km2/kg 4.00x1012 km2/kg
Inertia Iyy 1.42x1013 km2/kg 1.89x1013 km2/kg 2.00x1013 km2/kg
Inertia Izz 1.42x1013 km2/kg 2.22x1013 km2/kg 2.00x1013 km2/kg

The three different initial angular velocities are “No Tumbling” where

the rotation rate is 696 degrees per day, “Minimal Tumbling” (as described in

Table 4.8), and “Nominal Tumbling” (also as described in Table 4.8). All other
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aspects of the simulations are equivalent to the nominal scenario described

above, with two exceptions: first, the landmark initial covariance 1-sigma is

raised from 10 meters to 100 meters (reflecting the increased initial uncertainty

in the initial landmark locations); second, no sampled Guassian error is added

to the landmark positions or spin state (to simplify the evaluation of landmark

and body rotation separability). The resulting body-fixed landmark position

error over time for all thirty landmarks can be seen in Figure 4.20, for each of

the scenarios.

The results in Figure 4.20 show that for a sphere, no amount of tum-

bling will provide observability of the offsetting landmark longitude and body

rotation shift. With pure principal axis rotation (i.e. no tumbling), the shift

does not become observable even for the most non-spherical shape evaluated,

though some landmark body-fixed locations shift to different steady-state non-

zero error locations. But with non-spherical bodies and some non-principal

axis rotation, these shifts do become observable. As the body shape becomes

less spherical, less tumbling is needed to effectively observe the shift, as can be

seen comparing Figure 4.20e versus Figure 4.20h. The small body orientation

error throughout the simulation follows the same trends as the landmark er-

rors: with increasingly non-spherical bodies and greater levels of tumbling, the

small body orientation error converges faster and more effectively. Note that in

Figure 4.20e some landmarks never become visible, and thus the corresponding

error values are constant.

If initial landmark uncertainty is kept at ten meters 1-sigma, conver-

gence is much slower, so a conservatively higher initial landmark uncertainty
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(a) Sphere,
No Tumbling

(b) Sphere,
Minimal Tumbling

(c) Sphere,
Nominal Tumbling

(d) Nominal Body,
No Tumbling

(e) Nominal Body,
Minimal Tumbling

(f) Nominal Body,
Nominal Tumbling

(g) Oblong Body,
No Tumbling

(h) Oblong Body,
Minimal Tumbling

(i) Oblong Body,
Nominal Tumbling

Figure 4.20: Observability of Landmark Longitude Shift with Equal and
Opposite Small Body Rotation Shift, for Different Shapes and Levels of

Tumbling

should be used if an offset is possible. If additional ten meter 1-sigma Gaussian

landmark error or five degrees 1-sigma Guassian initial small body orientation

error are employed, there is no significant impact. Increasing offset errors up
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to 30 degrees (keeping the same initial covariance values) can be corrected

before the estimation begins to break down. However, increasing the initial

landmark position covariance or the initial spin state orientation covariance

might provide accurate correction for higher offset errors.

Much additional analysis for observability of landmark position and

small body orientation offset errors is possible, including an investigation of

the sensitivity of the offset observability to measurement noise and uncer-

tainty; sensitivity to spacecraft modeling errors, initial uncertainties, and pro-

cess noise; and sensitivity to small body initial angular velocity, CM offset,

and moments of inertia errors and uncertainties. Monte Carlo analysis that

samples each of these error sources can also be performed, and the offset error

can either be sampled or deterministically varied in a trade study analysis of

the body shape versus the level of tumbling.

4.8.8 Future Work

In future works, a sigma point filter (SPF) may be employed rather than

the EKF to better handle the nonlinearities in the dynamics and measurement

models. Possible modeling improvements include using a polyhedron shape

model rather than a triaxial ellipsoid and including camera optical distortion

effects. Different spacecraft trajectories may also be considered, to determine

if certain orbital regimes provide better estimation of the spin state for a

tumbling small body. How to better handle further degradation (or perhaps

total failure) of the independent “black-box” attitude determination system

may also be considered.
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4.9 Conclusions

An EKF SLAM algorithm is used to effectively estimate the small body

spin state for different tumbling small body scenarios, as well as the space-

craft position, velocity, and attitude; small body GM and diagonal moments

of inertia; and visible landmark surface positions. The estimation converges

successfully for large initial state errors, with order of magnitude error de-

creases in the small body attitude and angular velocity; spacecraft position

and velocity; and small body GM. Landmark surface position errors are also

reduced by a minimum factor of 3 for these scenarios. The small body diag-

onal moments of inertia have lower levels of observability for these scenarios,

as expected for spacecraft trajectories many small body radii from the small

body, and the small body CM offset and off-diagonal moments of inertia have

no significant observability. Additionally it is observed that a small amount of

measurement underweighting produces slightly better results.

When the initial small body spin state error is varied for both the

minimal and nominal truth tumbling scenarios, it is seen that the steady state

small body angular velocity error has remarkable resilience to larger levels of

initial angular velocity error, even for errors significantly exceeding the angular

velocity values. This is a critical result: if the initial angular velocity of the

body is highly uncertain, the SLAM estimation algorithm can still converge

on the correct values. Thus, upon arrival at a small body that is tumbling, as

long as the spacecraft can determine the orientation using landmarks within

reasonable accuracy (i.e. within 30 to 50 degrees in each component), then

the angular velocity can be estimated with no prior knowledge.

149



Because the spin state is required for the SPC landmark generation

method, natural feature landmarks (i.e. craters, ridge-lines, etc.) that are

generated and detected using manual or computer vision techniques may be

necessary to initialize the spin state estimation. These natural feature land-

marks may have larger initial body-fixed position error than with the SPC

method, and it is determined through a sensitivity study that the spin state

parameters and the landmark positions can be effectively estimated well be-

yond the largest expected initial landmark position errors. The same conclu-

sion holds for larger optical landmark measurement errors, which may occur

for non-SPC methods.

The SLAM algorithm performance is also assessed for a wide range of

different truth small body spin states, GM values, and CM offsets that are

expected for tumbling small bodies throughout the solar system. The results

reveal no issues estimating the state values, at least for the minimal number

of nominal Monte Carlo trials performed for each of the 1000 different initial

truth states.

To the author’s knowledge, this is the first application of a SLAM al-

gorithm to estimate the spin state of a tumbling small body. By deploying an

EKF SLAM estimation algorithm, many of the relevant quantities for success-

ful navigation of current small body missions are simultaneously estimated.

Thus, the estimation technique and tuning parameters used may prove use-

ful to future mission planners and operators of missions to small bodies. If

this tool is placed in an autonomous navigation framework, it has the poten-

tial to significantly reduce the ground resources that are currently required to
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navigate a small body mission, as well as increase the spacecraft autonomous

capabilities.
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Chapter 5

Tumbling Small Body Spin State Estimation
Using Independently Simulated Images

In preparation for the Rosetta mission’s arrival at Comet 67P/Churyumov–

Gerasimenko in 2014, the European Space Agency ran a high fidelity simu-

lation of a spacecraft arriving at a small body, creating simulated images of

the surface. The small body was made to “tumble” (i.e. have non-principal

axis rotation) in order to evaluate the European Space Operations Centre

navigation tools, and the same images were sent to NASA’s Jet Propulsion

Laboratory (JPL) to evaluate JPL navigation tools. Following this challeng-

ing task, JPL analysts sought alternative methods for small body spin state

estimation. In this work, the high fidelity tumbling small body simulation

images are processed by a sequential Extended Kalman Filter (EKF) Simul-

taneous Localization and Mapping (SLAM) method, as described in Chapter

4. The EKF SLAM method uses a limited set of manually identified optical

landmarks to estimate the small body spin state and scaled moments of in-

ertia; the spacecraft position and velocity (the spacecraft attitude is provided

by an independent attitude determination system); and the surface landmark

locations. A method for generating initial landmark surface positions is pro-

vided, as well as an interpolation method for the provided spacecraft attitude
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values. The SLAM method is successful in estimating the spin state of the

simulated body, with final smoothed error magnitudes lower than 1 degree for

the small body orientation and 2 degrees per day for the small body angular

velocity.

5.1 Introduction

A major challenge when first arriving at a previously unexplored small

body is the determination of its spin state. For the European Space Agency

(ESA) Rosetta mission, which approached Comet 67P/Churyumov–Gerasimenko

in the summer of 2014, it was not known prior to arrival whether the comet

was in principal axis rotation or in a “tumbling” spin state [18, 70]. A tum-

bling spin state, otherwise known as “complex rotation”, can be challenging to

initially estimate, despite being fully predictable over short time spans using

elliptic integrals in torque free scenarios [110].

To determine the effectiveness of their estimation tools in a scenario

where the comet is tumbling, navigation analysts at ESA’s European Space

Operations Centre (ESOC) generated a simulated scenario of a spacecraft ar-

riving at a small body with a high fidelity shape model and a tumbling spin

state. The resulting simulated images were provided to NASA Jet Propul-

sion Laboratory (JPL) navigation analysts, as part of an effort to verify JPL

navigation tools for their navigation backup role in the Rosetta mission. Af-

ter significant efforts, these analysts were successful in estimating the small

body spin state. However, the difficulty of the spin state estimation provided

motivation to seek alternative spin state estimation methods, particularly for
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future missions to other small bodies. After the Rosetta spacecraft arrived at

Comet 67P/Churyumov–Gerasimenko, ESOC revealed that even though the

body is in principal axis rotation, the spin rate of the body is slowing down

by approximately one second per day due to gas jet activity.1 Thus the spin

rate must be continually re-calibrated, producing more work for mission oper-

ators. For the above reasons, a sequential method to estimate the spin state

is desired.

The sequential estimation method chosen is the Extended Kalman Fil-

ter (EKF) Simultaneous Localization and Mapping (SLAM) filter described in

Chapter 4. The objective of this chapter is to determine how effectively the

previously established EKF SLAM algorithm can simultaneously estimate the

spacecraft state and small body spin state using the high fidelity simulated im-

ages provided by ESOC. Unlike in Chapter 4, surface landmark identification

and body-fixed landmark position initialization is addressed in this chapter.

The states that are estimated in the SLAM algorithm are the inertial

spacecraft position and velocity; the inertial impulsive maneuver delta-v vec-

tors; the small body orientation, angular velocity, and inertia tensor; and the

body-fixed surface landmark positions. These quantities are estimated directly

from pixel and line optical measurements of a limited set of manually identified

surface landmarks in the images provided. The simulated images are taken

during the small body characterization phase of the Rosetta mission, when

the spacecraft is many small body radii away from the body. The spacecraft

1http://aerosociety.com/News/Society-News/2998/Lecture-Report-Rosetta-
How-We-Landed-on-a-Comet
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is equipped with a narrow five degree field-of-view camera that results in the

small body filling most of the image array, and thus allows significant numbers

of landmarks to be clearly identified.

In addition to the simulated small body images and initial nominal

states provided by ESOC, initial spacecraft attitude estimates in the form of

quaternions are provided from an independent attitude determination system

(ADS) consisting of gyroscopes, star cameras, and an attitude determination

filter. These initial attitude estimates are provided at a variety of times be-

fore, between, and after the provided images, which must be interpolated to

the image times. Modified Rodrigues Parameters are used to represent the ori-

entation of the small body in order to avoid singularities (through the standard

shadow switching method described in Appendix A).

5.2 Optical Landmark Measurement Model

Optical landmark measurements are used in this scenario to estimate

the spacecraft state and spin state of the body. The optical landmark mea-

surement model is provided in section 1.1. Regarding the three major land-

mark types described in section 1.1, the maplet stereophotoclinometry (SPC)

method requires strong knowledge of the small body spin state before the

landmarks can be generated, and the significantly changing lighting conditions

hinder efforts to employ standard computer vision techniques. Thus, manual

selection of a limited number of landmarks is performed in this analysis.
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The spacecraft-fixed frame is defined by equation 4.1 in section 4.2. The

camera is assumed to be hard-mounted to the spacecraft bus, but unlike in

section 4.2, the camera frame is not aligned with the spacecraft frame. There

is a fixed known rotation between the frames defined as

Rsc2cam = 0.001637031862182 −0.999994400346755 −0.002918801434789
0.999998520539662 0.001635482807480 0.000533023896782
−0.000528247262468 −0.002919669693640 0.999995598232000

 (5.1)

where the camera boresight is along the camera frame z-axis. Thus the com-

plete rotation matrix that converts inertial vectors into the camera frame is

Ri2cam = Rsc2camRi2sc (5.2)

The modeled camera is comparable to the Charge-Coupled Device (CCD)

cameras used for navigation in previous small body missions, with a focal

length of 152.4484 mm and a sensor array of 1024 by 1024 pixels, for a field-

of-view of approximately 5 degrees. The diagonal terms Kx and Ky are set

to 76.9231 and -76.9290, respectively, and the off-diagonal terms are set to

zero. Note that the Ky value is negative as a result of a mirror in the cam-

era optical path, reversing the image in the y-axis. Camera distortion effects

on the images that are typically calibrated in flight are not included. While

equation 1.5 can produce expected measurement values in increments smaller

than individual pixels, the manually determined landmark observations from

the images are provided in terms of whole pixels.
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5.3 Spacecraft Attitude Interpolation

The spacecraft attitude is determined using an independent onboard

attitude determination system (ADS) consisting of gyroscopes, star cameras,

and an attitude determination filter. Using this independent estimate of the

spacecraft attitude in the small body spin state estimation allows us to bypass

modeling of the spacecraft attitude dynamics and maneuvers [19]. No sig-

nificant additional spacecraft attitude corrections using the optical landmark

measurements are necessary in this scenario. However, the provided attitude

values must be interpolated to the image time.

The spacecraft attitude is provided in quaternion form at numerous

times before, between, and after the provided picture times, in the same data

package containing the small body images. To determine the interpolated atti-

tude at each picture time, the first step is to determine which provided attitude

quaternions are immediately before and after the photo time. The rotation

matrix for each of these two quaternions (which have the scalar rotation value

listed last as q(4)) is described by

Rquat =

q(4)2 + q(1)2 − q(2)2 − q(3)2 2(q(1)q(2) + q(4)q(3)) 2(q(1)q(3)− q(4)q(2))
2(q(1)q(2)− q(4)q(3)) q(4)2 − q(1)2 + q(2)2 − q(3)2 2(q(2)q(3) + q(4)q(1))
2(q(1)q(3) + q(4)q(2)) 2(q(2)q(3)− q(4)q(1)) q(4)2 − q(1)2 − q(2)2 + q(3)2


(5.3)

The relative rotation matrix between these two rotation matrices, RPrev and

RPost, is computed as

Rrel = RPrev
TRPost (5.4)

This relative rotation matrix Rrel is translated into quaternion form qrel, as

described in Diebel [41] (with the scalar rotation component listed last). The
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angle of the rotation and the vector about which the rotation takes place is

computed from the quaternion as

θrel = 2 cos−1 (qrel(4))

vrel = qrel(1 : 3) / sin−1 (θrel/2)
(5.5)

The fraction of the time from the previous attitude quaternion to the image

time, divided by the time between the attitude quaternions, is computed.

This fraction is applied to the rotation angle θrel to obtain θrel−frac (i.e. a

linear interpolation). The fractional rotation angle is then used to compute a

quaternion with the same rotation vector vrel and the new fractional rotation

angle:

qrel−frac(1 : 3) = vrel ∗ sin (θrel−frac/2)

qrel−frac(4) = cos (θrel−frac/2)
(5.6)

This quaternion is then converted into the rotation matrix Rrel−frac using

equation 5.3. The overall inertial to spacecraft-fixed frame rotation matrix at

the image time is given by

Ri2sc = RPrev Rrel−frac (5.7)

The average time between the provided attitude times is approximately 8 min-

utes, with an average rotation angle between the provided attitude quaternions

of 0.26 degrees. Thus, the adjustments to the spacecraft attitude are not large

using the above method are not large. Direct interpolation of the quaternion

vectors is another option, using linear, quadratic, or other higher order in-

terpolation schemes. Further study of the relative accuracy of each of these

methods is needed however.
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5.4 Initializing Landmark Body-Fixed Locations

A significant challenge when using landmark observations to estimate

the spin state of a body is the initialization of the body-fixed locations of

those landmarks on the surface of the small body. When arriving at a small

body for the first time, shape models of the body can range from non-existent

to more detailed models produced by radar observations of previous Earth

flybys. Often only crude shape models from telescope observation campaigns

are available. Without a detailed shape model (which is built after the spin

state of the body has been estimated effectively), the method employed here

employs a basic triaxial ellipsoid fit to the body from the initial images of the

body, along with the initial landmark observations, to initialize the landmark

locations on the surface.

5.4.1 Triaxial Ellipsoid Dimensions

The first step in the process to obtain initial body-fixed landmark lo-

cations for use in the SLAM estimation filter is to compute the minimum,

medium, and maximum radius values of a triaxial ellipsoid that approximates

the small body shape. Note that this triaxial ellipsoid is used only for initial-

izing the landmark body-fixed positions: it is not used at any other stage of

the estimation process. To obtain these radius values, the provided spacecraft

state and small body spin state are propagated from the epoch time to the

picture times that provide the clearest view of the minimum, medium, and

maximum radius values, as determined by the analyst. In the small body mis-
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sion scenario described in this chapter, the first two images provide reasonable

views to measure these radius values.

The analyst selects pixel and line values in these images that they

believe reasonably represent the edge points of the small body along the axes

of the triaxial ellipsoid approximation. The magnitude of the two-dimensional

vector between these two points for each axis are computed, and divided in

half:

apix = ‖[p1, l1]− [p2, l2]‖ /2 (5.8)

The same equation is used for bpix and cpix (the other two axes). These radius

values are converted to focal plane coordinates by dividing by the pixel density

of the camera:

acam = apix/ |Kx| (5.9)

The same equation is used for bcam and ccam. Next the radii values are com-

puted in Cartesian space (with units of kilometers) using the equation

a = acam ‖rsc‖ /f (5.10)

where ‖rsc‖ is the norm of the nominal spacecraft position that corresponds

to the image time in which apix was determined, and f is the focal length of

the camera. The same equation is applied to obtain b and c (the other two

radii values).

5.4.2 Body-Fixed to Triaxial Ellipsoid Frame Rotation

Next the rotation matrix between the small body body-fixed reference

frame and the triaxial ellipsoid frame must be determined. To start, the
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Ri2cam and Rbf2i rotation matrices as described in equations 5.2 and 1.3 are

obtained for one or all of the images used to compute the triaxial ellipsoid

radii. The spacecraft position is then adjusted as needed perpendicular to the

propagated small-body-to-spacecraft vector rsc, such that the user-observed

approximate center of mass (CM) of the body (pCM , lCM) in each of the images

is aligned with the computed observation pixel and line (given the spacecraft

attitude). The spacecraft position is shifted instead of the spacecraft attitude

because the initial position has much greater uncertainty than the spacecraft

attitude provided by the ADS. To perform this shift, the inverse of equation

1.5 is first employed to compute the x and y focal plane coordinates of the

CM (assuming only Kx and Ky are non-zero as described previously):[
xCM
yCM

]
=
[
(pCM − p0) /Kx

(lCM − l0) /Ky

]
(5.11)

These xCM and yCM values are used to compute the vector from the space-

craft to the CM in camera coordinates (performing the opposite operation of

equation 1.4):

OCM =

xCM ∗ ‖rsc‖ /fyCM ∗ ‖rsc‖ /f
‖rsc‖

 (5.12)

Note that the third component OCM(3) is set equal to the norm of the space-

craft nominal position prior to the shift that corresponds to the image time.

The Ri2cam rotation matrix obtained for the image is then applied to rotate

the vector from camera coordinates into inertial coordinates, and the sign is

reversed to obtain the vector from the small body CM to the new spacecraft

position:

rsc−shifted = −RT
i2cam OCM (5.13)
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Next the unit vectors of the body-fixed axes, multiplied by 1 kilometer,

are rotated into the inertial frame and added to the new shifted vector from

the spacecraft to the small body CM, producing vectors from the spacecraft

to the end of the body-fixed axes vectors:

rbf−x−unit = −rsc−shifted +Rbf2i [1, 0, 0]T

rbf−y−unit = −rsc−shifted +Rbf2i [0, 1, 0]T

rbf−z−unit = −rsc−shifted +Rbf2i [0, 0, 1]T

(5.14)

These vectors are mapped into the image space using the landmark observa-

tion model, providing the user a projection of the body-fixed axes in the image.

The user then rotates the body-fixed frame using one or more single-axis ro-

tation matrices and re-maps the resulting unit vectors described in equation

5.14 until the projected vectors in the images approximately align with the

maximum, medium, and minimum radii of the body as determined previously.

The resulting rotation matrix Rbf2ell provides the rotation necessary to map

the landmarks from the triaxial ellipsoid to the body-fixed frame. In the small

body mission scenario described in this chapter, the resulting rotation matrix

is the combination of a rotation about the first axis and the third axis:

Rbf2ell = R1(20◦)R3(−55◦) (5.15)

Again it is emphasized the triaxial ellipsoid axes will only approximately align

with the user-determined maximum, medium, and minimum radii of the body.

This manual alignment may prove more challenging for more complex shape

models, but is likely to provide sufficient accuracy for the process of initializing

the landmark locations.
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5.4.3 Near-Side Triaxial Ellipsoid Intersections

With the dimensions of the triaxial ellipsoid approximating the small

body and the rotation from that triaxial ellipsoid to the body-fixed axes deter-

mined, the near-side intersections of the triaxial ellipsoid from the initial land-

mark observations can be computed, providing the initial landmark body-fixed

positions. Several images are necessary to obtain initial positions estimates of

landmarks on all sides of the body. For each landmark, the first photo in which

the landmark appears is noted. A loop over these photos is then performed,

with the following steps taken for each photo.

First the spacecraft state and small body spin state are propagated from

the epoch to the picture time. The small body inertial-to-body-fixed rotation

matrix Ri2bf = RT
bf2i is computed from the propagated small body spin state,

and the inertial-to-camera rotation matrix Ri2cam is computed for the picture

time (as described in equation 5.2). Then a manual determination of the small

body CM is obtained from the image by the user. The manual small body CM

location, propagated spacecraft position magnitude, and Ri2cam are used to

adjust the spacecraft position to align the observed CM location in the image

with the expected location, using the method described in subsection 5.4.2,

“Body-Fixed to Principal Axes Frame Rotation”.

For each landmark that appears for the first time in this image, the

observation pixel and line values are extracted, pLM and lLM . The focal plane

coordinates xLM and yLM are computed using equation 5.11. There are now
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three equations and three unknowns,

OLM (1) = xLM ∗OLM (3)/f

OLM (2) = yLM ∗OLM (3)/f

‖OLM‖ = 1

(5.16)

where the components of the OLM unit vector from the spacecraft to the

landmark in the camera frame are the three unknowns. If the expressions for

OLM (1) and OLM (2) are used in the 2-norm equation ‖OLM‖ = 1, the third

component OLM (3) is solved for using

OLM (3) = 1√
(xLM/f)2 + (yLM/f)2 + 1

(5.17)

The OLM (1) and OLM (2) components are then computed using this value for

OLM (3) and the expressions in equation 5.16.

The spacecraft-to-landmark unit vector OLM is then rotated from the

camera frame to the inertial frame using Ri2cam,

r̂sc2lm = RT
i2cam OLM (5.18)

and then further rotated into the triaxial ellipsoid frame, along with the shifted

spacecraft position rsc−shifted, as

r̂ellsc2lm = Rbf2ell Ri2bf r̂sc2lm

rellsc−shifted = Rbf2ell Ri2bf rsc−shifted
(5.19)

The equation for an ellipse is

x2/a2 + y2/b2 + z2/c2 = 1 (5.20)
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where a, b, and c are the maximum, medium, and minimum radii of the triaxial

ellipsoid computed using equation 5.10. The equations for each of the triaxial

ellipsoid surface position components x, y, and z are

x = r̂ellsc2lm(1) ∗ α + rellsc−shifted(1)

y = r̂ellsc2lm(2) ∗ α + rellsc−shifted(2)

z = r̂ellsc2lm(3) ∗ α + rellsc−shifted(3)

(5.21)

These equations for x, y, and z are fed into equation 5.20, with the intent to

solve for the two possible values of α. The coefficients of the α2, α1, and α0

terms are

A =r̂ellsc2lm(1)2/a2 + r̂ellsc2lm(2)2/b2 + r̂ellsc2lm(3)2/c2

B =2 ∗
(
rellsc−shifted(1) ∗ r̂ellsc2lm(1)/a2 + rellsc−shifted(2) ∗ r̂ellsc2lm(2)/b2+

rellsc−shifted(3) ∗ r̂ellsc2lm(3)/c2
)

C =rellsc−shifted(1)2/a2 + rellsc−shifted(2)2/b2 + rellsc−shifted(3)2/c2 − 1

(5.22)

where Aα2 + Bα + C = 0, and the value of 1 on the right hand side of

equation 5.20 is moved into the C term. The value under the square root in

the quadratic formula,

d = B2 − 4AC (5.23)

is checked to determine if it is greater than zero (indicating real roots and thus

two valid intersections with the triaxial ellipsoid). If d is greater than zero,

the root that corresponds to the near-side intersection of the triaxial ellipsoid

is

α = −B −
√
d

2A (5.24)
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Thus the vector from the spacecraft to the triaxial ellipsoid intersection, in

the triaxial ellipsoid frame, is

rellsc2lm = r̂ellsc2lm ∗ α (5.25)

For those landmarks that do not have an intersection with the triaxial

ellipsoid (i.e. d in equation 5.23 is less than zero), the intersection of the

observation unit vector with the plane located at the small body center of mass

and perpendicular to the small-body-to-spacecraft vector is used. Landmarks

with no triaxial ellipsoid intersections are more likely if the observation is on

the edge of the body in the image, in a region of the small body that the triaxial

ellipsoid doesn’t include. The angle between the observation unit vector and

the spacecraft position vector is computed as

β = π − cos−1

 r̂ellsc2lm • rellsc−shifted∥∥∥rellsc−shifted∥∥∥
 (5.26)

where the expression is subtracted from π because the vectors are pointing in

opposite directions. Then the magnitude α is computed as

α =

∥∥∥rellsc−shifted∥∥∥
cos(β) (5.27)

which is used in equation 5.25 to compute rellsc2lm. A significantly more complex

“closest intersection point on the triaxial ellipsoid” method is possible to use,

but not necessary for accurate estimation of the landmark positions in the

scenario described in this chapter.

Finally, the initial landmark position relative to the small body CM,

expressed in the body-fixed frame, is computed as

rbflm = Ri2bf rsc−shifted +RT
bf2ell r

ell
sc2lm (5.28)
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These landmark locations are used in the initial state vector that is estimated

with landmark observations as described in the “Estimation and Smoothing”

section.

5.5 Dynamical Models

The nominal spacecraft dynamical trajectory model includes only the

central body acceleration. In the small body mission scenario described in

section 5.7, the central body force at the start time is 1.289 × 10-4 N, while

the solar radiation pressure (SRP) force is 1.712 × 10-6 N and the third body

perturbation (TBP) force is 2.528 × 10-7 N. These values are similar to those

listed in the “Max Radius” column of Table 4.1 from Chapter 4, as the mission

scenario is similar (approximating the comet characterization phase of the

Rosetta mission). As a result of the relatively small accelerations imparted by

SRP and TBP over scenario time scale (with the gravity perturbations also

likely very small, though no gravity field would be available yet), no modeling

of these perturbations is necessary.

The small body spin state, which consists of the orientation and angu-

lar velocity vector, is numerically integrated via Euler’s rigid body equation of

motion. Torques on the small body are expected to be negligible over the sce-

nario time span, and thus only Euler’s equation of motion are needed. Torque

free motion does have closed form solutions (in terms of elliptic integrals)

[110], but numerical integration is chosen so that torques can be easily added

in future analysis if needed. YORP effects, out-gassing effects, and other ce-
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lestial bodies all can provide torques on the small body (as described in section

1.2.1.6).

Euler’s rigid body equations of motion require only the ratio of the

moments and products of inertia, and thus the inertia tensor can be scaled by

any value [117]. As a result, the inertia tensor can only be estimated with an

arbitrary scaling from the landmark observations. Typically the first diagonal

moment of inertia, Ixx, is used for this scaling following a forward filter pass

of the landmark observations.

Both the spacecraft and small body dynamics are numerically inte-

grated using a variable-step seventh-order Runge-Kutta method, with a tol-

erance of 1×10-15. In addition to the state, the state transition matrix is

similarly numerically integrated using the same variable step seventh-order

Runge-Kutta method, which is used to map the state covariance forward or

backward in time.

5.5.1 Spin State Representation

Modified Rodrigues Parameters (MRP) are used to represent the orien-

tation of the small body [38]. A full discussion of the advantages of using MRP

values for attitude estimation, as well as their computation and how to switch

to a shadow set to avoid singularities, is provided in Appendix A. The initial

Euler angle values provided by the analyst are converted to MRP, and output

MRP state errors and uncertainty values can be converted to Euler angles for

a more intuitive representation in plotted results. The relationship between

the Euler angles used to represent the small body orientation and the inertial
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to body-fixed rotation matrix is as defined by the International Astronomical

Union (IAU) [4]:

Ri2bf = R3(φsb)R1(π2 − δsb)R3(αsb + π

2 ) (5.29)

where φsb is the prime meridian (PM) twist angle, δsb is the declination, and

αsb is the right ascension (RA). The small body angular velocity and moments

of inertia are expressed in the body-fixed frame so that the inertia tensor is

constant over the integration time spans.

5.6 Estimation and Smoothing

The estimation filter employed is the standard discrete EKF, as de-

scribed by Tapley, et. al. [121]. The estimated parameters are the spacecraft

position and velocity; the small body orientation, angular velocity, and scaled

inertia tensor; and the body-fixed locations of surface landmarks considered

for navigation. The state vector is constant and does not change depending on

the number of visible landmarks at each picture time. All states are simulta-

neously estimated directly from the landmark observations, and the standard

central finite difference method is used to compute all required partial deriva-

tives. The impulsive maneuver delta-v vectors are also indirectly estimated

using the estimated states as described in subsection 5.6.1, obviating the need

to including the maneuvers in the state.

To achieve the best possible estimate of the small body spin state at

each picture time, as well as the other state parameters, multiple iterations of

the estimation process are desired, which involves a smoothing process after
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each estimation pass. Traditionally a smoother such as the 1965 Rauch, Tung,

and Striebel (RTS) fixed-interval smoother [121, 118, 10] is employed, which

is recommended in the literature due to its computational efficiency. However,

in this analysis we deploy the smoother described in Woodburn [139]: the RTS

smoother is modified to employ a full non-linear state transition to move the

smoothed state backward in time for greater accuracy. While it has been well

established in the literature that employing a sequential filter and smoother

with no process noise is equivalent to a single iteration of the batch least

squares (BLS) estimation algorithm [121], the sequential filter and smooth-

ing approach allows for process noise to be easily and naturally included, as

necessary.

Just as multiple iterations of the BLS estimation algorithm are typi-

cally performed, multiple iterations of the forward filter pass and backwards

smoothing pass also provide increasingly improved state estimates. These

iterations (with each iteration consisting of a single forward filter pass and

backward smoothing pass) are performed over all picture times for a preset

number of iterations or until corrections to the state estimates are sufficiently

small. Alternatively, the filter and smoothing passes can be repeated until the

measurement residuals are lower than a particular threshold. In this analysis,

ten preset iterations are performed.

Note that only the spacecraft position and velocity, as well as the small

body orientation and angular velocity, are modified in the smoothing pass.

These state values are modified because they change in the dynamical model

from one time to the next: the smoother acts to enforce the dynamics of the
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system on the estimates. Thus, all “constant” states (i.e. quantities that do

not change in the dynamical model) remain the same during the smoothing

pass [118]. The nominal impulsive maneuver delta-v vectors are also modified

during the smoothing pass, as described in the following subsection.

5.6.1 Maneuver Modeling and Estimation

The spacecraft maneuvers are treated as an impulsive change in velocity

at the provided maneuver times. We assume that the maneuvers do take place

at those times (i.e. we assume that the onboard clocks record the thruster fire

times accurately enough for the purposes of orbit determination), and that

the maneuver can be sufficiently modeled as impulsive. Maneuvers intended

to change the trajectory of the spacecraft are provided as a non-zero delta-v

vector, while unintentional maneuvers associated with attitude desaturation

burns have an initial nominal value of zero.

During the forward filter pass, if a maneuver is known to occur between

the present photo and the next photo, the most recent updated state and

covariance are numerically integrated to the maneuver time. At this time,

the nominal delta-v is added to the spacecraft velocity and the uncertainty in

the velocity is inflated to account for the maneuver uncertainty. For the first

filtering and smoothing iteration, this velocity covariance inflation is prescribed

by the analyst based on previously estimated models of the spacecraft thruster

performance uncertainties, in the form of a value to add directly to each of the

spacecraft velocity covariance diagonal values. The overall state and covariance
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are then propagated forward to the next picture time and the forward filter

pass continues.

During the smoothing pass, if a maneuver is known to occur between the

present photo and the previous photo, the state and covariance are smoothed

to the maneuver time using the Woodburn smoothing method [139]. The

state and covariance are then smoothed across the impulsive maneuver, also

as described in Woodburn [139], which allows the estimation of the maneuver

and its associated uncertainty. The updated maneuver delta-v is used in the

following forward filter pass, and the updated uncertainty is used to inflate

the spacecraft velocity uncertainty during that same forward filter pass. After

updating the maneuver estimate, the smoothing pass continues backward in

time. A strong advantage of this approach is that the maneuvers do not need

to be added to the estimation state.

5.6.2 Truth Comparison

When comparing the nominal estimated states to the truth states pro-

vided by ESOC and JPL, care must be taken to ensure the states are repre-

sented in a consistent reference frame. The spacecraft position and velocity

are expressed in inertial coordinates relative to the center of mass of the small

body, for both the nominal and truth states. Thus computing the spacecraft

position and velocity error involves a simple subtraction of the truth states

from the nominal state estimates. However, for the remaining states, the com-

putation of the error requires some conversion of the nominal estimated states

to appropriate reference frames.
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The first elements of the small body spin state are the three MRP states

representing the orientation of the body. These MRP states are equivalent to a

rotation matrix, or direction cosine matrix (DCM), that converts vectors from

the inertial frame to the user defined body-fixed frame. In other words, it is the

orientation of the body-fixed frame relative to the inertial frame. However, the

small body body-fixed frame chosen by the analyst can have any orientation,

as long as it is fixed to small body.

The truth orientation is provided with the body-fixed axes set equal

to the principal axes of the body (i.e. inertia tensor matrix has non-zero val-

ues only for the diagonal terms). Thus the nominal estimated orientation of

the body must be rotated into the principal axes as well (in order to obtain

a consistent comparison of the nominal and truth orientation values), which

is performed using the estimated inertia tensor. To determine the rotation

from the nominal estimated body-fixed frame to the nominal estimated prin-

cipal axes, the eigenvalues and eigenvectors of the estimated inertia tensor are

computed, and the resulting eigenvectors are provided in three columns of a

matrix,

Rpa2bf =
[
v1 v2 v3

]
(5.30)

These unit vectors define the principal axes within the previously established

body-fixed frame (in which the moments of inertia are estimated by the filter).

This orthogonal matrix is the rotation matrix that transforms vectors from

the principal axes to the previous body-fixed frame. Thus to compute the

orientation of the principal axes in the inertial frame, the original rotation
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matrix describing the orientation of the body is premultiplied by RT
pa2bf :

Ri2pa = RT
pa2bfRi2bf (5.31)

which can then be transformed into MRP, Euler angles, or quaternion attitude

formats. It is this transformed orientation that is then compared to the truth

orientation values in order to compute the orientation error. Thus, the orien-

tation error of the body is perhaps better described as the directional error of

the estimated inertia tensor.

The error in the magnitude of the principal axes moments is readily

computed as well, as the eigenvalues associated with the above eigenvectors

are equivalent to the principal axes moments for the estimated inertia tensor.

These eigenvalues are scaled such that the Ixx value is 1, in order to compare

the scaled Iyy and Izz values to the provided truth values which are also scaled

by Ixx.

This scaling by Ixx, as well as the computation of the rotation matrix

from the eigenvectors described in equation 5.30, is performed using the final

estimated inertia tensor from each filter pass of the observations. The rotation

matrix derived from the inertia tensor is applied to all previous orientation

states and then compared to the truth orientation states in order to compute

the error. The rotation matrix derived from the inertia tensor eigenvectors is

not computed at every filter update because the rotation varies significantly

as the inertia tensor initial converges on the steady state solution.

It is important to verify that the resulting eigenvectors form a right-

handed-system (RHS). This property can be confirmed by computing the de-
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terminant of the matrix, with a value of positive 1 for a set of unit vectors

that form a RHS. If the algorithm used to compute the eigenvectors from the

inertia tensor produces a set of unit vectors that do not form a RHS, the sign

of one or more of these unit vectors must be flipped in order to form a RHS.

Once the set of eigenvectors forms a RHS, the rotation in equation 5.31 can

be performed.

The prefit and postfit covariance values for the orientation values and

inertia values are also rotated into the estimated principal axes frame by pre-

and post-multiplying by the partial derivatives of the rotated values with re-

spect to the non-rotated values:

P rotated
MRP = ∂MRProtated

∂MRPoriginal
P original
MRP

∂MRProtated
∂MRPoriginal

T

(5.32)

P rotated
I = ∂Irotated

∂Ioriginal
P original
I

∂Irotated
∂Ioriginal

T

(5.33)

These partial derivative matrices are computed using a standard numerical

differencing approach. Note that the function used in the numerical differenc-

ing for computing the rotated inertia tensor also divides by the Ixx value to

properly scale the rotated Iyy and Izz uncertainties.

The small body angular velocity, defined in the body-fixed frame, must

also be rotated into a new frame in order to directly compare with the provided

truth angular velocity. However, if the same rotation matrix obtained by

the eigenvectors of the inertia tensor is used to rotate the angular velocity,

the resulting values will be a combination of the angular velocity error and

the inertia tensor error. To isolate the angular velocity error, the body-fixed
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angular velocity is rotated into the inertial frame and then rotated into the

truth body-fixed frame:

ωpa = RTruth
i2bf

(
RNom
i2bf

)−1
ωbf (5.34)

Using the true difference between the nominal (prefit and postfit) body-fixed

frame and the truth body-fixed frame (which is aligned with the true principal

axes) allows for a more consistent determination of the angular velocity error.

The angular velocity error could also be computed in the inertial frame by

converting the truth body-fixed angular velocity vectors to the inertial frame.

The estimated body-fixed landmark locations are rotated into the truth

body-fixed frame for error computation using the same rotation matrix defined

in equation 5.34:

LM pa = RTruth
i2bf

(
RNom
i2bf

)−1
LM bf (5.35)

This rotation is performed instead of using Rpa2bf from equation 5.30 for

the same reason that the estimated body-fixed angular velocity is rotated

by RTruth
i2bf

(
RNom
i2bf

)−1
in equation 5.34: to isolate the error in the estimated

inertia tensor from the error in the body-fixed landmark positions.

Approximate truth landmark body-fixed positions are computed by set-

ting all other state values to the truth values (and disabling any corrections to

these values) and estimating only the landmark body-fixed positions. Correc-

tions are done for several iterations until the landmark body-fixed positions are

stable and exhibit very little change with additional iteration. The body-fixed

positions can also be determined from a truth shape model, but this approach
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is not necessary given the stable position estimates obtained with the above

method.

The prefit and postfit covariance values for the angular velocity and

landmark position values are also rotated into the truth principal axes frame

by pre- and post-multiplying by the same rotation matrix RTruth
i2bf

(
RNom
i2bf

)−1
,

as this is equivalent to the partial derivative of the rotated values with respect

to the original values:

P rotated
ω =

(
RTruth
i2bf

(
RNom
i2bf

)−1
)
P original
ω

(
RTruth
i2bf

(
RNom
i2bf

)−1
)T

(5.36)

P rotated
LM =

(
RTruth
i2bf

(
RNom
i2bf

)−1
)
P original
LM

(
RTruth
i2bf

(
RNom
i2bf

)−1
)T

(5.37)

5.7 Small Body Mission Scenario

The mission scenario is similar to the comet characterization phase of

the Rosetta mission [46, 71]. In this phase, the spacecraft flies in hyperbolic

trajectories with respect to the comet approximately 100 kilometers from the

body [138], with minimal delta-v needed to change trajectories due to the

radial distance and weak gravity of the small body. The sixty provided images

are from a portion of two of these hyperbolic trajectories. The small body is

well lit in the images due to the relative geometry of the sun, spacecraft, and

small body. Twenty two unique landmarks are manually selected, spaced apart

as much as feasible, to provide a sufficient number of landmarks in all images.

Figure 5.1 displays the number of observed landmarks at each image time.

The body-fixed locations for seventeen of the twenty two landmarks (77%)

are initialized using the triaxial ellipsoid method described by equations 5.16
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Figure 5.1: Number of Visible Landmarks For Each Picture

through 5.25, while the remaining five landmark locations (22%) are initialized

using the plane intersection method described by equations 5.25 through 5.27.

In addition to the provided images and initial attitude estimates, there

is a single provided non-zero nominal maneuver of [-0.7260, -0.0115, -0.4629]

m/s between images 44 and 45. There are also seven provided desaturation

maneuver times, which have nominal delta-v values of zero. However, the

first desaturation maneuver occurs before the first picture time, and two more

occur during the same measurement gap as the orbit maneuver. Thus only the

remaining four desaturation maneuvers are included in the simulation. The

exact times associated with these maneuvers, along with the first and last

picture times, are provided in Table 5.1. The filter starts at the first picture

time, and the provided initial state values are shown in Table 5.2.
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Table 5.1: Event Timing

Event Time
First Picture 08-Aug-2014 11:37:00.000

Desaturation Maneuver #1 08-Aug-2014 22:31:51.350
Desaturation Maneuver #2 09-Aug-2014 10:31:51.350
Desaturation Maneuver #3 09-Aug-2014 22:31:51.350

Orbit Maneuver 10-Aug-2014 09:08:00.600
Desaturation Maneuver #4 10-Aug-2014 22:27:01.400

Final Picture 11-Aug-2014 02:07:00.000

Table 5.2: Initial State Values

State Initial Values
Position (Inertial) [-19.703, 57.181, 79.557] km

Velocity (Inertial) [4.0515×10-4, 1.3679×10-4,
1.5926×10-5] km/s

Pole Right Ascension 220 deg
Pole Declination -70 deg

Longitude of the Prime Meridian 142.472 deg
Body-Fixed Angular Velocity [0, 0, 679.2454] deg/day

GM 8.067722×10-7 km3/s2

Scaled Diagonal Inertia Moments
(Ixx, Iyy, Izz)

[1, 1, 1]

Scaled Off-Diagonal Inertia
Moments (Ixy, Ixz, Iyz)

[0, 0, 0]

Landmark Body-Fixed Positions See section 5.4: “Initializing
Landmark Body-Fixed Locations”

5.7.1 Filter Tuning

Some initial state uncertainty parameters are provided with the obser-

vations and initial nominal states received from JPL and ESOC, but are pre-

sented only as crude starting values which likely need significant adjustment.

However, in a more realistic mission scenario, the initial spacecraft uncertain-
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ties are likely to be significantly lower due to preliminary optical navigation

using center-of-brightness measurements of the small body, in addition to ra-

diometric tracking measurements. The initial covariance values, along with

other filter parameters such as measurement noise and state process noise, are

varied systematically to determine the how the results are affected. The prefit,

postfit, and smoothed residuals are studied for the first and last iteration, as

well as the level of state correction in the last iteration, to obtain a measure

of the filter performance and the strength of the final results. Typically this

systematic variation involves reducing and increasing each value one at a time

by 50% to 200%. If improvement is seen by either reducing or increasing the

value, it is further modified until an approximate optimum value is found (de-

fined by the final postfit residuals RMS). The initial and final tuned EKF filter

parameters resulting from this systematic variation are listed in Table 5.3.
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Table 5.3: Filter Tuning Parameters

Simulation
Parameter (1-σ) Initial Values Tuned Values

Epoch Position
Covariance (Radial-
Transverse-Normal)

[100, 100, 100] km [1.4, 0.04, 0.02] km

Epoch Velocity
Covariance [1, 1, 1]×10-1 km/s [3, 3, 3]×10-6 km/s

Epoch Small Body
Orientation Covariance

[60, 60, 10] deg [0.0125, 0.05, 0.05]
(MRP format)

Epoch Small Body
Angular Velocity

Covariance

[518.4, 518.4, 518.4]
deg/day [120, 200, 2] deg/day

Epoch Small Body
Scaled Diagonal

Moments of Inertia
Covariance

0.5 0.5

Epoch Small Body
Scaled Off-Diagonal
Moments of Inertia

Covariance

0.05 0.05

Epoch Small Body
Landmark Position

Covariance
[1, 1, 1] km [1, 1, 1] km

Measurement Noise
Covariance

[3, 3] pixels [3, 3] pixels

Process Noise q for
Position and Velocity

0 km2/s3 1×10-16 km2/s3

Process Noise for
Small Body Angular
Velocity Components

0 deg/day 0.25 deg/day

Velocity Covariance
Inflation - Orbit

Maneuver
2×10-5 (km/s)2 2×10-5 (km/s)2

Velocity Covariance
Inflation - Desat

Maneuvers
1×10-6 (km/s)2 1×10-6 (km/s)2
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When the simulated images and initial nominal states and covariances

were initially provided by JPL and ESOC, the author attempted to estimate

the spin state of the small body along with the other states listed in section

5.6, with no knowledge of the truth states. After some tuning of the initial

states and process noise, a solution was found that possessed low residuals

and minimal state corrections after several iterations. However, it was discov-

ered after comparing the generated solution to the truth (using the process

described in section 5.6.2), that while the spin state estimates were reasonably

close to the truth values, the spacecraft states possessed error larger than the

3-sigma covariance values. A miscommunication was quickly discovered: the

provided spacecraft attitude values were much more certain and close to the

truth values than was originally assumed when generating the first solution

(which made significant corrections to the spacecraft attitude at most obser-

vation times). This discovery led to the realization that the initial spacecraft

position and velocity uncertainty would be much lower as well, in order to

consistently have the small body in the images. Additionally it was recog-

nized that initial spacecraft position uncertainty in the radial direction would

be higher than the other two orthogonal directions (given the distance to the

small body and assuming center of brightness measurements were used to re-

fine the spacecraft initial state). Thus the initial position uncertainty was

modified such that the provided radial uncertainty is significantly larger than

the other two orthogonal directions. With these changes, along with process

noise introduced in the filter to slightly inflate the spacecraft state and the

small body angular velocity state, the error in the estimated solution drops
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significantly. The error is also much better represented by the filter’s formal

covariance.

In an actual mission, without the benefit of the truth, the initial state

uncertainties should be carefully considered and reduced as much as possi-

ble using radiometric tracking, center-of-brightness measurements, and laser

ranging measurements (assuming the range to the small body is feasible for

the laser ranging). Additionally, during the small body characterization phase

the measurements from radiometric tracking and laser ranging should be ei-

ther incorporated into the filter, or used to verify the SLAM solution derived

from the landmark observations alone. The laser ranging measurements should

prove particularly helpful in reducing the uncertainty and error in the space-

craft radial position, which has lower observability if optical navigation alone

is used during mission phases in which the spacecraft is a significant distance

(i.e. multiple small body radii) away from the small body [18].

The question remains however: why did the filter appear to converge

on a solution (i.e. small final residuals and minimal state changes) with sig-

nificant error when the initial uncertainties were larger? Two hypotheses are

one, that there remains an observability problem in the overall SLAM estima-

tion formulation, or two, that there is a non-linear convergence problem with

multiple minima. To assess these two possibilities, in future work an exten-

sive observability analysis is needed, as well as the application of alternative

higher order nonlinear filters such as the Iterated EKF [13], ADF, or many

other more recently developed nonlinear filters [144].
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To gain greater confidence that the filter is tuned affectively such that

estimated state has low error and formal covariance values effectively repre-

sent the error, Monte Carlo analysis can also be performed. Using the initial

nominal states and uncertainties, many different initial truth states can be

generated and the resulting collection of error and covariance values for all the

trials can provide insight into the effectiveness of the current tuning param-

eters (as well as the sensitivity of the final estimated solutions to the initial

state errors). Additionally, the process of mapping uncertainties in the dynam-

ical models of the spacecraft and small body into the estimated state space in

order to compute an appropriate level of process noise at each measurement

should be pursued, as described in Chapter 3.

To improve the performance of the filter when it is initialized, the land-

mark body-fixed coordinates are not corrected in the first picture time (as they

are either initialized using that image or an image in the future for landmarks

not yet visible). Similarly the small body orientation is not corrected for the

first observation of the second filter pass, for the same reason: to stabilize the

filter initialization. Without these stabilizing actions in the first two itera-

tions (when significant state error and uncertainty are still present), attempts

to simultaneously correct the spacecraft position, small body orientation, and

landmark positions can result in large errors and unrealistic formal uncertain-

ties.

Process noise that acts to inflate the state uncertainty over propagation

intervals is also added to improve the performance of the filter. The traditional

process noise format, as defined in Tapley [121], is used for the spacecraft
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position and velocity. The q value used to tune that process noise is provided

in Table 5.3. Process noise is also added to the angular velocity diagonal

covariance elements, via a direct addition of constant user-provided values at

the end of every covariance propagation. While this direct addition method

is effective in this scenario, a small body spin state process noise model that

accounts for different propagation time intervals is saved for future work.

5.8 Results

The manually determined landmark image locations are provided to

the EKF SLAM algorithm, which is then followed by a smoothing pass of the

same data. This combination of filtering and smoothing is repeated ten times,

leading to negligible changes in the state estimates in the final iterations. Fig-

ure 5.2 provides the spacecraft position prefit and postfit error magnitudes,

as well as the 3-σ prefit and postfit covariance magnitudes, for the final itera-

tion. Figure 5.2 also provides the position values for each picture time of the

scenario, for the final iteration. The resulting smoothed inertial trajectory is

shown in Figure 5.3.
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Figure 5.2: Spacecraft Position
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Figure 5.4 provides the spacecraft velocity prefit and postfit error mag-

nitudes, as well as the 3-σ prefit and postfit covariance magnitudes, for the first

and final iteration. Note the increases in the velocity uncertainties at the ma-

neuver times in the first iteration, as the filter opens up the velocity covariance

to account for the maneuver uncertainty. The error in the impulsive delta-v
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Figure 5.4: Spacecraft Velocity

of the orbit maneuver at hour 45 is reduced from 17.4 mm/s to 2.8 mm/s, an

84% reduction. The much smaller desaturation maneuvers initially have error
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magnitudes ranging from 0.5 to 1 mm/s, and these errors are reduced by an

average of 45%.

Figure 5.5 provides the small body orientation prefit and postfit error

magnitudes, as well as the 3-σ prefit and postfit covariance magnitudes, for the

first and last iteration. To avoid singularities in the Euler angle representation

that occur when using the nominal body-fixed frame, first the estimated MRP

states and uncertainties are rotated into the principal axes frame as described

in section 5.6.2. These MRP states and the associated covariance matrices are

then converted to Euler angles and Euler angle uncertainties. Note that some

spikes remain in the covariance and errors in Figure 5.5b, corresponding to

the minimum declination values shown in Figure 5.5c. The MRP error and

covariance magnitudes are shown in Figure 5.5d, with much smoother plots

of the error and covariance. The peak values in the MRP covariance plot are

a result of the shadow switching, which occur at the points when these peak

values occur. The much larger spikes in the Euler angle error and magnitude

may be a result of the small additional sensitivity in the mapping from MRP

values to Euler angles as the declination approaches the singularity value of

-90 degrees, but additional investigation is needed to verify this hypothesis.
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Figure 5.5: Small Body Orientation

Figure 5.6 provides the small body body-fixed angular velocity prefit

and postfit error magnitudes, as well as the 3-σ prefit and postfit covariance

magnitudes, for the first and last iteration. The angular velocity is specified

in the small body body-fixed frame to allow a constant inertia tensor in the

numerical integration of the spin state. Note that the estimated angular ve-

locity values used to compute the error and the associated covariance values
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Figure 5.6: Small Body Angular Velocity

are rotated into the truth principal axes frame as discussed in section 5.6.2,

“Truth Comparison”.
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Figure 5.7 displays the first and last iteration estimated principal axes

moments, as computed by the rotation into the principal axes of the final

estimated inertia tensor in each iteration (see section 5.6.2). The principal

axes moments (along with the converted covariance values) are scaled by the

Ixx value, and thus only the Iyy and Izz are plotted. The 3-σ covariance values

are shown via the error bars added to the estimated states. Note that the last

iteration estimated values better match the truth values and the uncertainties

are smaller as well.
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Figure 5.7: Small Body Principal Axes Moments of Inertia - Scaled by Ixx
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Figure 5.8 provides the body-fixed landmark position error for the first

landmark identified, for the first and last iteration, as well as the median error

and covariance of all twenty two landmarks identified. Note that the variation

in the landmark errors in Iteration 10 is due almost entirely to variations in

the small body orientation, as these body-fixed landmark locations values are

rotated from the nominal body-fixed frame to the truth body-fixed frame at

each picture time (as described in section 5.6.2). The landmark locations do

not shift significant amounts in the final iteration. The final positions in the

body-fixed frame for the final iteration are displayed in Figure 5.9.

Figure 5.10 provides the prefit, postfit, and smoothed residuals for the

first iteration and the final iteration. The improvement achieved in the esti-

mated states from the first to final iteration is summarized effectively by the

plots of the measurement residuals. The final image provided of the high fi-

delity simulated small body is displayed in Figure 5.11, along with the final

iteration smoothed prefit, postfit, and actual observations of the landmarks.

Overall the estimated states converge reasonably well in the first it-

eration, particularly the spin states and landmark locations, and additional

iteration allows significantly lower errors and uncertainties for the final state

estimates. However, this strong performance is a result of an extensive tuning

process and significant changes to the initial state uncertainties from those

initially provided. The provided truth states illuminated the incorrect initial

assumptions about the uncertainty in the spacecraft states (especially regard-

ing the provided spacecraft attitude values), which reinforces the importance

of carefully considering the initial states and uncertainties resulting from prior
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Figure 5.8: Body-Fixed Landmark Position Error, Covariance

radiometric tracking, optical navigation using center-of-brightness measure-

ments, and the independent spacecraft ADS.

The next important steps towards the goal of a fully autonomous ini-

tial spin state estimation capability include an automated method that can

consistently and accurately identify a limited set of surface landmarks spaced

sufficiently apart, as well as an algorithm that can automatically fit a 3D triax-
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Figure 5.9: Smoothed Body-Fixed Landmark Positions

ial ellipsoid to the body based on the first few images taken (for the landmark

position initialization). If onboard application of these algorithms is desired,

computational efficiency must be carefully considered. For ground processing,

additional iteration via repeated filtering and smoothing passes can further

refine the state estimates (and allow for process noise to be used, unlike the

standard BLS).
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Figure 5.10: Measurement Residuals
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5.9 Conclusions

A sequential EKF SLAM method effectively estimates the spin state

of a high fidelity simulated tumbling small body using images provided by

the ESA’s ESOC and NASA’s JPL. A limited set of landmarks are manu-

ally identified in the images, and the method for generating initial body-fixed
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surface positions for those landmarks is provided. Initial spacecraft attitude

quaternions are also provided, specified at times before, between and after the

images. These attitude values are interpolated to the image times.

In addition to estimating the small body spin state, the following states

are also successfully estimated: the spacecraft position and velocity, the small

body scaled inertia tensor, and the landmark surface positions. Multiple itera-

tions of filtering and smoothing passes are performed, providing final smoothed

spin state estimates and indirect estimates of the impulsive maneuver delta-v

vectors. A method for rotating the spin states, inertia tensor, and landmark

locations into reference frames that allow a consistent comparison to the pro-

vide truth states is provided. The procedure for converting the associated

formal state uncertainties is also described.

The sequential EKF SLAM implementation provides a new method to

estimate the spin state of a small body, which has the potential to significantly

boost initial spin state estimation capabilities in future missions to small bod-

ies. In particular, small bodies that are tumbling have proven challenging

for heritage tools when initially estimating the spin state, which provided the

motivation for this work. The sequential approach, instead of the BLS ap-

proach used previously, allows process noise to be incorporated as needed, and

lends itself better to any future onboard estimation capabilities. Additionally,

torques delivered to the body via outgassing or other sources can be accounted

for over time. The archival of the filter structure and tuning parameters is also

important, as the literature is generally absent those details.
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As discussed in Section 5.7.1, tuning of the filter initially proved chal-

lenging due to unrealistically high uncertainties in the initial spacecraft states.

Upon receiving the truth states, this discrepancy was revealed, leading to sig-

nificant improvements in the initial state uncertainties. Without knowledge of

the truth, as will be the case in an actual mission, the initial state uncertain-

ties from prior spacecraft navigation using radiometric tracking and center-of-

brightness optical measurements should be carefully considered. The author

also strongly recommend employing additional measurements of the space-

craft during the small body characterization phase such radiometric tracking

and laser ranging to the small body surface to verify the SLAM algorithm is

effectively estimating the combined spacecraft and small body state.
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Chapter 6

Conclusions

This dissertation has described advances in estimation methods that are

focused on small body optical navigation, and in particular techniques that can

assist in NASA’s goal of greater autonomous navigation capabilities. Section

1.3 lists the primary contributions made to the state-of-the-art, and Appendix

B lists the publications associated with the research from each chapter. The

primary conclusions are reviewed in this chapter, with a focus on how these

estimation method advances can contribute to future missions. Avenues for

related future research are explored as well.

Chapter 2 describes the use of standard and higher order sequential

estimation methods to estimate the spacecraft state from optical small body

surface landmark measurements, in an effort to provide an estimation frame-

work amenable to the sequential nature of autonomous onboard navigation and

achieve greater filter accuracy and uncertainty representation. The standard

Extended Kalman Filter (EKF) and higher order Additive Divided-Difference

sigma point Filter (ADF) are implemented, and extensive Monte Carlo analy-

ses are performed to compare the different estimation techniques. Significantly

improved estimation performance is achieved by the ADF over the EKF for

larger initial state errors and time between measurements. The measurement
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update portion of the ADF provides most of the improvement over the EKF,

with much longer measurement interval times necessary to show improvement

from the state propagation step of the ADF (versus standard numerical prop-

agation).

By employing the ADF instead of the EKF, significant improvement

can be achieved in the state error and uncertainty representation for scenarios

with larger initial state errors (which may easily occur) and scenarios with

longer intervals between measurements (which can also easily occur). The

computational costs are slightly higher for the ADF versus the EKF, but still

well within computational limitations of onboard systems. Additionally, by

using only the measurement update portion of the ADF, the vast majority (if

not all) of the improvement in estimation performance can be achieved, for a

significantly lower computational cost than employing the full ADF.

While the use of higher order filters can reduce the errors introduced

by the linearization of non-linear dynamics and measurements models, errors

and uncertainties in the dynamical models themselves can lead to significant

problems in the estimation and uncertainty representation of the state param-

eters. To address this problem, a novel method to precompute a process noise

profile along a reference trajectory using consider covariance analysis tools and

filters is presented in Chapter 3. The process noise profile is intended for use

in an onboard navigation filter, allowing the filter to account for time- and

state-dependent perturbations in the dynamics. Little to no traditional exten-

sive manual tuning is required. The new process noise method also produces
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formal uncertainties that better match the estimate errors in scenarios with

highly variable dynamics.

There are limitations for the new process noise computation method

however. A reference trajectory must exist, and the vehicle must not devi-

ate too far from the reference path for the precomputed process noise to be

effective. The errors in the considered model parameters must also approx-

imately match the model parameter uncertainties used for the process noise

precomputation.

The improvements to state errors and uncertainties can enable missions

to meet more stringent navigation requirements in mission phases with rapidly

changing dynamics, as well as significantly reduce the time required by the

ground operators to tune the onboard filter. The method can also be applied

to numerous other fields that employ onboard robotic navigation, including

many terrestrial applications. Any robotic vehicles that operate in highly

variable dynamical environments and possess onboard navigation would be

excellent candidates for this new process noise profile method.

The first half of the dissertation focuses on innovations that have strong

potential to assist with small body navigation when the spacecraft has moved

into orbit about the body, and in particular the lower orbits. However, signif-

icant challenges also exist for the initial approach phase of missions to small

bodies, primarily due to the lack of detailed knowledge regarding the shape

and spin state of the body (as well as the spacecraft state relative to the body).

To address these challenges, chapter 4 explores the use of Simultaneous Local-
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ization And Mapping (SLAM) to estimate not only the spacecraft state but

also the spin state of the small body and the surface landmarks during the

initial approach phase of a mission (also known as the small body characteriza-

tion phase). The Rosetta mission scenario is used to demonstrate the SLAM

algorithm, where state estimates converge successfully for large initial state

errors. The convergence for some states occurs within two to three photos,

and all states are converged within two arcs of the eight-arc trajectory.

The steady state small body angular velocity error has remarkable re-

silience to larger levels of initial angular velocity error, even for errors signif-

icantly exceeding the angular velocity values. This is a critical result: if the

initial angular velocity of the body is highly uncertain, the SLAM estimation

algorithm can still converge on the correct values (i.e. the angular velocity can

be estimated with no prior knowledge). The SLAM estimation algorithm also

remains effective for a range of different truth spin states, masses, and center of

mass offsets that correspond to expected tumbling small bodies throughout the

solar system. Additionally the SLAM algorithm performs well for the largest

expected initial landmark position errors and optical landmark measurement

errors.

Extensive observability analyses employing the Stripped Observability

Matrix and the Singular Value Decomposition is used to determine the rela-

tive observability of each of the states, with the small body angular velocity

fortunately having the greatest observability of all the estimated states. One

common observability problem is differentiating a consistent error in the lon-

gitude of the landmark surface positions from an error in the rotation of the
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body. Exploring the space of different body shapes (spherical to highly non-

spherical) and tumbling states (principle axis rotation to highly tumbling)

reveals some level of non-sphericity and non-principal axis rotation is needed

to differentiate these errors, with increasing non-sphericity and non-principal

axis rotation leading to faster convergence of these quantities.

Chapter 5 uses the SLAM spin state estimation method developed in

Chapter 4 to estimate the spin state of a high fidelity tumbling small body

independently simulated by the European Space Agency (ESA). Also success-

fully estimated are the spacecraft position and velocity; small body inertia

tensor; landmark surface positions; and via an indirect estimation process the

impulsive maneuver delta-v vectors. A method for initializing the small body

landmark locations is provided, as well as an interpolation technique for the

provided spacecraft quaternions.

After performing a forward filter pass of the landmark optical measure-

ments at each photo time, the results are processed in a backward smoothing

pass. The forward and backward passes are repeated a total of ten iterations

to further refine the state estimates. The maneuvers are indirectly estimated

via this smoothing process as well. However, the frequency of the desatu-

ration maneuvers, the small magnitude of those maneuvers, and the process

noise added to the spacecraft state prevent significant refinement of the desat-

uration maneuver estimates. Despite the limited accuracy of the desaturation

maneuver estimates, the spacecraft and spin states are well estimated.
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The use of sequential SLAM techniques in future missions to small

bodies may allow mission operators to overcome the limitations of current

navigation tools that are not designed to handle tumbling bodies. Additionally,

SLAM may enable spacecraft to approach the small body surface on a shorter

timeline, which can reduce risk in scenarios where poorly understood and

unpredictable forces such as comet outgassing can occur. The use of SLAM in

an onboard filter also has the potential to significantly reduce required ground

resources for navigation of the spacecraft and estimation of the small body

spin state and shape.

6.1 Future Work

In addition to the higher order ADF employed in Chapter 2, many other

higher order filters have the potential to provide enhanced navigation perfor-

mance, such as the particle filter [118] or the Gaussian Sum Filter [2]. The

EKF, ADF, and other higher order sequential filters can also be compared in

greater detail to a wide variety of BLS approaches (with varying arc-lengths).

Performance of all of these filters can be studied in many different small body

scenarios as well, with particular interest in the performance for descent tra-

jectories to the surface when filter accuracy can significantly affect landing

accuracy.

The novel method to compute a process noise profile from dynamical

model uncertainties also has the potential to significantly improve the mea-

surement uncertainty used in a filter to account for errors in the measurement

model. One example is the optical landmark measurement model, which can
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have errors in the camera properties as well as the process used to determine

the landmark location in the image.

A preliminary analysis is performed in Chapter 3 investigating the effect

on the performance of the filter when the model parameter uncertainty used

to compute the process noise profile does not match the actual error in those

model parameters. A more complete analysis that examines the sensitivity of

the filter performance to this mismatch in the model parameter uncertainty

versus error would likely provide significant value, especially if the analysis

could be performance for a wide range of mission scenarios.

The application of this novel process noise precomputation method to

other estimation problems that possess mismodeled or unmodeled perturba-

tions, particularly for large, state-dependent perturbations, would also be of

great interest. Examples include modeling the spacecraft mass, area, and re-

flectivity coefficient as consider parameters for the process noise computation

to better account for SRP and TBP errors, as well as time-dependent atmo-

spheric properties to better account for drag errors. Many other terrestrial

applications likely exist as well. Employing a simplified non-linear problem

that bridges the gap between the linear example problem and higher fidelity

nonlinear scenarios is also recommended for future work, to better explore the

strengths and limitations of the new precomputed process noise method.

To assist mission designers and navigators as they assess different pos-

sible trajectories for future missions, it would be helpful to generate averaged

process noise profiles that are functions only of the spacecraft radius mag-
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nitude or other temporal/spatial variations. These averaged process noise

values could also be employed onboard if it is determined they provide suffi-

ciently accurate process noise profiles. Along the same lines, an exploration

of the effectiveness of different interpolation techniques used to represent the

precomputed process noise profile would likely be useful for future mission

navigators, as an onboard interpolation scheme could prove necessary to fit

within the computational constraints of an onboard processor. Further, also

useful would be an investigation of how these interpolation techniques are af-

fected by changes in the measurement frequency and structure, as well as how

the filter is affected when a particular measurement is not obtained (or the

measurement times are not as planned).

Perhaps the most critical future work for the problem of initial small

body spin state estimation is the application of the new process noise gener-

ation method described in Chapter 3 to better determine the process noise

that should be employed for the spacecraft and small body state, based on

the predicted uncertainty in the dynamical models. By employing the new

process noise method, a significant amount of the tuning now required could

be eliminated. Along these same lines, mapping uncertainties in the observa-

tions and the size and orientation of the triaxial ellipsoid used for landmark

location initialization has the potential to provide significantly improved ini-

tial landmark uncertainties for the SLAM process. More realistic initial state

uncertainties from center-of-brightness optical measurements and radiometric

tracking measurements should also be investigated.
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While relatively few landmarks are needed to successfully estimate the

spin state of a tumbling small body (thus making manual selection feasible),

the use of modern open source image processing algorithms such as Scale-

Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF)

could prove particularly useful in reducing operator work load, as well as po-

tentially reduce measurement errors. However, an investigation is needed to

determine if these algorithms can consistently recognize landmarks in very dif-

ferent lighting conditions and re-acquire the landmarks after they have rotated

out of sight. Along these same lines, also useful would be an analysis of how

the number of landmarks and the distribution of the identified landmarks on

the surface affects the spin state estimation performance. Also of value would

be an investigation of the limits of the SPC method for generating and identi-

fying landmarks on tumbling small bodies, to determine what level of tumbling

will necessitate other landmark methods for initial spin state estimation.

Other potential future work regarding the use of the SLAM algorithm

for small body spin state estimation includes a comparison of the EKF to the

BLS method and higher order sequential filters such as the ADF from Chapter

2, an investigation of how the inclusion of camera optical distortion parameters

affect the filter performance, and a study how different orbit regimes in the

approach phase affect the spin state estimation of a tumbling small body.
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Appendix A

Modified Rodrigues Parameters

Modified Rodrigues Parameters (MRP) [38] are used to represent the

orientation of an object, providing an alternative to standard representations

such as Euler angles and quaternions. If Euler angles are provided by the

analyst, these can be converted to MRP for internal use within the program.

Similarly the output attitude states, errors, and uncertainties intended for

plots and illustrations can be reverted to Euler angle values from MRP, for a

more intuitive representation.

A.1 Computation and Time Derivative

If converting from an Euler angle attitude representation, these angles

must initially be converted to quaternion format [41]. The three-component

MRP vector is computed directly from the quaternion representation:

σ = q

1 + q0
(A.1)

where q is the vector portion of the quaternion and q0 is the scalar part. The

MRP vector is converted back to a quaternion [22] using

q0 = 1− ‖σ‖2

1 + ‖σ‖2

q = 2σ
1 + ‖σ‖2

(A.2)
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The quaternion can be used to compute the appropriate Euler angles for output

as desired.

The time derivative of the MRP representation used in dynamical mod-

els is

σ̇ = 1
4
[(

1− σTσ
)
I + 2σx + 2σσT

]
ω (A.3)

where ω is the angular velocity, σx is the skew-symmetric cross product matrix,

and I is the 3x3 identity matrix.

A.2 Shadow Set Switching

The primary advantage of the MRP representation is how easily the

singularity (which must exist in any three-state attitude representation) can

be avoided. The MRP singularity only exists at a 360 degree rotation, and

can easily remain far from the singularity by switching to what is known as a

shadow set. As described in Karlgaard [61], the shadow switch is performed

when the magnitude of the MRP vector exceeds 1, which is equivalent to a

rotation of 180 degrees (and thus exactly halfway between the singularities of

the standard MRP set and the shadow MRP set). The switch to the shadow

MRP values is done via

σS = − σ

σTσ
(A.4)

where σs is the “switched” MRP vector. Note that the magnitude of the

nominal MRP vector dictates when the switching is done, and the truth MRP

vector used for computing the error is switched only when the nominal MRP

is switched (regardless of the truth MRP vector magnitude). The dynamical
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propagation and filter update equations are identical for the standard MRP

and shadow MRP values, another strong advantage of the MRP representation.

The covariance must also be adjusted for each shadow set switch, as

described by

P̄ S
k = ΛP̄kΛT (A.5)

where Λ is the identity matrix with dimension equal to the estimated state

except for those elements associated with the MRP:

Λ =



I 0 0 0 0
0 . . . 0 0 0
0 0 ΛMRP 0 0
0 0 0 . . . 0
0 0 0 0 I

 (A.6)

ΛMRP is defined using the partial of the switched MRP vector with respect to

the original MRP vector,

ΛMRP = ∂σS

∂σ
= 2

(
σTσ

)−2
σσT −

(
σTσ

)−1
I (A.7)

It is important to convert the full covariance by pre-multiplying and post-

multiplying by Λ rather than converting only the MRP covariance diagonal

elements using ΛMRP , in order to also convert the associated cross-correlation

terms.

A.3 Other Advantages for Attitude Estimation

The MRP attitude representation is particularly advantageous when

used as part of an attitude estimation process. Crassidis [38] shows that an

additive estimation approach such as the standard additive EKF is effective for
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the MRP representation, particularly when the measurement model is function

of a rotation matrix (defined by the MRP) multiplied by a vector (as is the

case for optical navigation). Thus the multiplicative kalman filter that is

often necessary for attitude estimation can be avoided, and as a result the

spacecraft attitude can be estimated simultaneously with other state values

such as the position and velocity. Additionally, Karlgaard [61] shows that

attitude estimation using the MRP is computationally more efficient than

other standard techniques such as the quaternion multiplicative filter.
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Appendix B

Publications

Accepted for Publication, Refereed Journals
Chapter 2

Olson, C., Russell, R., Carpenter, J.R., “Small Body Optical Navigation Us-

ing The Additive Divided Difference Sigma Point Filter,” AIAA Journal

of Guidance, Control and Dynamics, Vol. 39, No. 4, April 2016, pp.

922-928.

Chapter 4

Olson, C., Russell, R., Bhaskaran, S., “Spin State Estimation of Tumbling

Small Bodies,” The Journal of the Astronautical Sciences, Vol. 63, No.

2, June 2016, pp. 124-157. 10.1007/s40295-015-0080-y

In Review, Refereed Journals
Chapter 3

Olson, C., Russell, R., Carpenter, J.R., “Precomputing Process Noise For

Onboard Sequential Filters,” AIAA Journal of Guidance, Control and

Dynamics, submitted April 5, 2016.
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http://dx.doi.org/10.1007/s40295-015-0080-y


Planned
Chapter 5

Olson, C., Russell, R., Bhaskaran, S., “Tumbling Small Body Spin State

Estimation Using Independently Simulated Images,” Journal TBD.

Other Publications

Bhaskaran, S., Nandi, S., Broschart, S., Wallace, M., Alberto Cangahuala,

L., and Olson, C., “Small Body Landings Using Autonomous Onboard

Optical Navigation,” The Journal of the Astronautical Sciences, Vol. 58,

No. 3, Sept. 2011, pp. 409–427. 10.1007/bf03321177

Olson, C., “Analysis of Asteroid Landing Capabilities Using Autonomous

Optical Navigation,” Masters Thesis, The University of Texas at Austin,

2009.

Conference And Presentations
Chapter 2

Olson, C., Russell, R., Carpenter, J.R., “Small Body Optical Navigation Us-

ing The Additive Divided Difference Sigma Point Filter,” 25th AAS/AIAA

Spaceflight Mechanics Meeting, Santa Fe, NM, Jan 2014, AAS 14-422.
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http://dx.doi.org/10.1007/bf03321177


Chapter 3

Olson, C., Russell, R., “Precomputing Process Noise for Onboard Sequential

Filters,” 27th AAS/AIAA Spaceflight Mechanics Meeting, Napa, CA,

Feb 2016, AAS 16-475.

Chapter 4

Olson, C., Russell, R., Bhaskaran, S., “Spin State Estimation of Tumbling

Small Bodies,” 26th AAS/AIAA Spaceflight Mechanics Meeting, Williams-

burg, VA, Jan 2015, AAS 15-363.

Other Conference And Presentations

Bhaskaran, S., Nandi, S., Broschart, S., Wallace, M., Cangahuala, L., Ol-

son, C., “Small Body Landing Accuracy Using In-Situ Navigation”, AAS

Guidance, Navigation, and Control Meeting, Breckenridge, CO, Feb

2011, AAS 11-056.

Olson, C., Wright, C., Long, A., “Expected Navigation Flight Performance

for the Magnetospheric Multiscale (MMS) Mission,” 23rd AAS/AIAA

Spaceflight Mechanics Meeting, Charleston, SC, Jan 2012, AAS 12-199.

Olson, C., Long, A., Carpenter, J. R., “Sensitivity of Magnetospheric Multi-

Scale (MMS) Mission Navigation Accuracy to Major Error Sources,”

22nd AAS/AIAA Spaceflight Mechanics Meeting, New Orleans, LA, Feb

2011, AAS 11-207.
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Olson, C., “Navigation Concepts for the Magnetospheric Multi-Scale (MMS)

Mission,” AIAA Region I Young Professional, Student, and Education

Conference, Applied Physics Laboratory, Laurel, MD, Nov 2011.

Olson, C., Scaperoth, P., “Mission Orbit Navigation Analysis Approach and

Modeling Assumptions”, NASA Magnetospheric Multi-Scale (MMS) Flight

Dynamics Subsystem Critical Design Review (CDR), June 2010.
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